用户名: 密码: 验证码:
柔软物体力触觉形变模型验证系统
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Force-deformation model validation system for flexible objects in haptic rendering
  • 作者:陆熊 ; 孙浩浩 ; 万文章 ; 陈晓丽
  • 英文作者:LU Xiong;SUN Haohao;WAN Wenzhang;CHEN Xiaoli;College of Automation Engineering,Nanjing University of Aeronautics and Astronautics;
  • 关键词:力触觉再现 ; 作用力测量 ; 无线通信 ; 柔性物体形变模型 ; 模型验证
  • 英文关键词:haptic rendering;;force measurement;;wireless communication;;deformation model for flexible object;;model validation
  • 中文刊名:GFKJ
  • 英文刊名:Journal of National University of Defense Technology
  • 机构:南京航空航天大学自动化学院;
  • 出版日期:2018-10-28
  • 出版单位:国防科技大学学报
  • 年:2018
  • 期:v.40
  • 基金:国家自然科学基金资助项目(61773205,61203319,61203316);; 江苏省基础研究计划(自然科学基金)资助项目(BK2012383);; 2016年度南京航空航天大学基本科研业务费专项资助项目(NS2016032)
  • 语种:中文;
  • 页:GFKJ201805010
  • 页数:5
  • CN:05
  • ISSN:43-1067/T
  • 分类号:63-67
摘要
为了验证柔性物体力-形变模型的合理性,构建了基于CC2531芯片的无线数据收发平台、力传感器测量平台和FALCON手控器位移测量平台的力-形变模型验证系统。以新鲜猪肝脏为实验对象,研究了弹性形变实验和穿刺实验的作用力与位移之间的关系;以力-形变测量数据为基础,进行了参数验证校调。仿真实验结果表明:模型中力-形变特性与实际测量值保持一致。该系统能广泛应用于柔性物体力-形变模型验证,对于促进力触觉虚拟医学仿真系统的发展具有重要意义。
        In order to verify the rationality of flexible object deformable model,the force-deformation model validation system was established,which consists of wireless data transceiver platform based CC2531,force sensor measuring platform,and displacement measurement platform based FALCON hand controller. The relationship between interactive force and deformation in the elastic deformation experiment and impaling experiment with the experimental object of fresh pig liver was studied. Based on the data of force and deformation,the parameters were confirmed and amended. The simulation results show that the characteristic of force and deformation is consistent with actual measurement. The proposed system can be utilized for verifying general deformable models,which will lead to more applications in haptic based medical simulation.
引文
[1] Sagardia M,Hertkorn K,Hulin T,et al. VR-OOS:the DLR's virtual reality simulator for telerobotic on-orbit servicing with haptic feedback[C]//Proceedings of 2015 IEEE Aerospace Conference,2015:1-17.
    [2] Liu A,Tendick F,Cleary K,et al. A survey of surgical simulation:applications, technology, and education[J].Presence,2003,12(6):599-614.
    [3] Dayak E,evik U. Endoscopic instrument tracking for surgical simulation training in a controlled environment via a camera and a planar mirror[J]. Computers in Biology and Medicine,2015,67(C):161-171.
    [4] Silva E C,Taleb C,Costa N M S C. Virtual environment for competency evaluation in the management of diabetes mellitus[J]. Revista Brasileira de Educa92o Médica,2015,39(3):470-478.
    [5]张小瑞,宋爱国,孙伟,等.支持力/触觉反馈的虚拟肝脏手术仿真系统[J].东南大学学报(自然科学版),2009,39(3):490-494.ZHANG Xiaorui,SONG Aiguo,SUN Wei,et al. Virtual liver surgery simulation system supporting haptic feedback[J].Journal of Southeast University(Natural Science Edition),2009,39(3):490-494.(in Chinese)
    [6] Correa M,Ruiz-del-Solar J,Verschae R. A realistic virtual environment for evaluating face analysis systems under dynamic conditions[J]. Pattern Recognition,2016,52(C):160-173.
    [7]曹永刚,张玉茹,王党校,等.面向口腔临床操作的力觉交互装置控制系统设计与实现[J].系统仿真学报,2007,19(5):1086-1089,1099.CAO Yonggang, ZHANG Yuru,WANG Dangxiao,et al.Design and implementation of control system in haptic device for dental training system[J]. Journal of System Simulation,2007,19(5):1086-1089,1099.(in Chinese)
    [8]刘忠铭,李佑,龚建平.达芬奇手术机器人肝胆外科中的应用[J].腹腔镜外科杂志,2015(7):556-560.LIU Zhongming, LI You, GONG Jianping. Leonardo Da Vinci surgical robot application in liver and gallbladder surgery[J]. Journal of Laparoscopic Surgery,2015(7):556-560.(in Chinese)
    [9]岳龙旺,王树新,曾妍文,等.基于多体理论的虚拟血管缝合分析[J].天津大学学报:自然科学与工程技术版,2006,39(1):89-95.YUE Longwang, WANG Shuxin, ZENG Yanwen, et al.Analysis of virtual vessel suture based on multibody theory[J]. Journal of Tianjin University:Science and Technology,2006,39(1):89-95.(in Chinese)
    [10] Mohammadi M,Baldi T L,Scheggi S,et al. Fingertip force estimation via inertial and magnetic sensors in deformable object manipulation[C]//Proceedings of IEEE Haptics Symposium,2016.
    [11] Tarr C. Method and apparatus for generating and interfacing with rigid and deformable surfaces in a haptic virtual reality environment:US 6191796 B1[P]. 2001-4-20.
    [12] Walker K C,Wang D. Physically-based analytical modelling of deformable haptic environments[C]//Proceedings of IEEE Haptics Symposium,2010:445-452.
    [13] Chan S, Blevins N H, Salisbury K. Deformable haptic rendering for volumetric medical image data[C]//Proceedings of World Haptics Conference,2013:73-78.
    [14] Kim S Y,Park J,Kwon D S. The real-time haptic simulation of a biomedical volumetric object with shape-retaining chain linked model[J]. IEICE-Transactions on Information and Systems,2005,E88-D(5):1012-1020.
    [15] Cheng Q Q,Liu P X,Lai P H,et al. An interactive meshless cutting model for nonlinear viscoelastic soft tissue in surgical simulators[J]. IEEE Access,2017,5:16359-16371.
    [16] Sui Y,Pan J J,Qin H,et al. Real-time simulation of soft tissue deformation and electrocautery procedures in laparoscopic rectal cancer radical surgery[J]. The International Journal of Medical Robotics&Computer Assisted Surgery:MRCAS,2017,13(4):28467005.
    [17] Korzeniowski P,Barrow A,Sodergren M H,et al. NOVi SE:a virtual natural orifice transluminal endoscopic surgery simulator[J]. International Journal of Computer Assisted Radiology and Surgery,2016,11(12):2303-2315.
    [18] Ahmadzadegan A,Sadeghnejad S,Bahrami M,et al. A low cost virtual reality haptic system for wrist rehabilitation using falcon robot[C]//Proceedings of the International Conference on Mechanical Engineering-Isme,2015.
    [19] Andersen A. Small size 2.4 GHz PCB antenna:SWRA117D[R].Texas Instruments Incorporated,2008.
    [20] A USB-enabled system-on-chip solution for 2. 4 GHz IEEE802. 15. 4 and Zig Bee applications:SWRS086A[R]. Texas Instruments Incorporated,2010.
    [21] Xiao J,Hu X G,Xiao J Z,et al. Multi-resolution model correction for improving the accuracy of flying laser ranging sensor[J]. Optik-International Journal for Light and Electron Optics,2016,127(12):4987-4994.
    [22]万文章,陆熊.基于蜂窝状多孔固体结构的柔性物体模型研究[J].电子科技,2012,25(3):4-7.WAN Wenzhang, LU Xiong. A model for simulating deformable objects based on the honeycomb structure[J].Electronic Science and Technology,2012,25(3):4-7.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700