Direct and single-step sensing of primary ovarian cancers related glycosidases
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Direct and single-step sensing of primary ovarian cancers related glycosidases
  • 作者:Dan ; Li ; Ling ; Liang ; Yawei ; Tang ; Linna ; Fu ; Shehua ; Xiao ; Quan ; Yuan
  • 英文作者:Dan Li;Ling Liang;Yawei Tang;Linna Fu;Shehua Xiao;Quan Yuan;Molecular Science and Biomedicine Laboratory, Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University;
  • 英文关键词:Black phosphorus quantum dots;;Fluorescence;;Sensing;;β-Galactosidase;;Inner filter effect
  • 中文刊名:FXKB
  • 英文刊名:中国化学快报(英文版)
  • 机构:Molecular Science and Biomedicine Laboratory, Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University;
  • 出版日期:2019-05-15
  • 出版单位:Chinese Chemical Letters
  • 年:2019
  • 期:v.30
  • 基金:supported by the National Key R&D Program of China(No.2017YFA0208000);; the National Natural Science Foundation of China(No.21675120);; Ten Thousand Talents Program for Young Talents,the Foundation for Innovative Research Groups of the National Nature Science Foundation of China(No.21521063);; the Start-up Research Fund for Prof.Q.Yuan(Nos.531107050973,531109010053)
  • 语种:英文;
  • 页:FXKB201905018
  • 页数:4
  • CN:05
  • ISSN:11-2710/O6
  • 分类号:93-96
摘要
High sensitive, accurate detection for tumor-associated overexpressed enzyme activity is highly significant for further understanding enzyme function, discovering potential drugs, and early diagnosis and prevention of diseases. In this work, we developed a facile, direct and single-step detection platform for primary ovarian cancers related glycosidase activity based on the inner filter effect(IFE) between glycosidase catalytic product and black phosphorus quantum dots(BPQDs). Highly fluorescent BPQDs were successfully synthesized from bulk black phosphorus by a simple liquid exfoliation method. Under the catalysis of β-galactosidase, p-nitrophenyl-β-D-galactopyranoside(PNPG) was transformed into pnitrophenol(PNP) and β-D-galactopyranoside. Meanwhile, the absorption of catalytic product PNP greatly overlapped with the excitation and emission spectra of fluorescent BPQDs, leading to the fluorescence quenching of BPQDs with a high quenching efficiency. The proposed sensing strategy provided a low detection limit of 0.76 U/L, which was 1 — 2 orders of magnitude lower than most unmodified sensing platforms. D-Galactal was selected as the inhibitor for β-galactosidase to further assess the feasibility of screening potential inhibitors. The fluorescence recovery of BPQDs suggests that the unmodified sensing platform is feasible to discover potential drugs of β-galactosidase. Our work paves a general way in the detection of glycosidase activity with fluorescent BPQDs, which can be promising for glycosidase-related disease diagnosis and pathophysiology elucidation.
        High sensitive, accurate detection for tumor-associated overexpressed enzyme activity is highly significant for further understanding enzyme function, discovering potential drugs, and early diagnosis and prevention of diseases. In this work, we developed a facile, direct and single-step detection platform for primary ovarian cancers related glycosidase activity based on the inner filter effect(IFE) between glycosidase catalytic product and black phosphorus quantum dots(BPQDs). Highly fluorescent BPQDs were successfully synthesized from bulk black phosphorus by a simple liquid exfoliation method. Under the catalysis of β-galactosidase, p-nitrophenyl-β-D-galactopyranoside(PNPG) was transformed into pnitrophenol(PNP) and β-D-galactopyranoside. Meanwhile, the absorption of catalytic product PNP greatly overlapped with the excitation and emission spectra of fluorescent BPQDs, leading to the fluorescence quenching of BPQDs with a high quenching efficiency. The proposed sensing strategy provided a low detection limit of 0.76 U/L, which was 1 — 2 orders of magnitude lower than most unmodified sensing platforms. D-Galactal was selected as the inhibitor for β-galactosidase to further assess the feasibility of screening potential inhibitors. The fluorescence recovery of BPQDs suggests that the unmodified sensing platform is feasible to discover potential drugs of β-galactosidase. Our work paves a general way in the detection of glycosidase activity with fluorescent BPQDs, which can be promising for glycosidase-related disease diagnosis and pathophysiology elucidation.
引文
[1]D.H.Juers,B.W.Matthews,R.E.Huber,Protein Sci.21(2012)1792-1807.
    [2]T.D.Butters,R.A.Dwek,F.M.Platt,Chem.Rev.100(2000)4683-4696.
    [3]F.Vella,Biochem.Educ.24(1996)65-65.
    [4]D.L.Meany,D.W.Chan,Clin.Proteom.8(2011)1-14.
    [5]D.Asanuma,M.Sakabe,M.Kamiya,et al.,Nat.Commun.6(2015)6463.
    [6]K.Gu,Y.Xu,H.Li,et al.,J.Am.Chem.Soc.138(2016)5334-5340.
    [7]J.Huang,N.Li,Q.Wang,Y.Gu,P.Wang,Sensor.Actuat.B-Chem.246(2017)833-839.
    [8]W.Wang,K.Vellaisamy,G.Li,et al.,Anal.Chem.89(2017)11679-11684.
    [9]S.K.Chatterjee,M.Bhattacharya,J.J.Barlow,Cancer Res.39(1979)1943-1951.
    [10]L.Peng,M.Gao,X.Cai,et al.,J.Mater.Chem.B 3(2015)9168-9172.
    [11]S.Trifonov,Y.Yamashita,M.Kase,M.Maruyama,T.Sugimoto,Anat.Sci.Int.91(2016)56-67.
    [12]R.K.Gary,S.M.Kindell,Anal.Biochem.343(2005)329-334.
    [13]D.Maruhn,Clin.Chim.Acta 73(1976)453-461.
    [14]H.W.Lee,C.H.Heo,D.Sen,et al.,Anal.Chem.86(2014)10001-10005.
    [15]C.Tang,J.Zhou,Z.Qian,et al.,J.Mater.Chem.B 5(2017)1971-1979.
    [16]M.Kamiya,D.Asanuma,E.Kuranaga,et al.,J.Am.Chem.Soc.133(2011)12960-12963.
    [17]Z.Guo,H.Zhang,S.Lu,et al.,Adv.Funct.Mater.25(2015)6996-7002.
    [18]H.Liu,Y.Du,Y.Deng,P.D.Ye,Chem.Soc.Rev.44(2015)2732-2743.
    [19]H.Liu,A.T.Neal,Z.Zhu,et al.,ACS Nano 8(2014)4033-4041.
    [20]Z.Shen,S.Sun,W.Wang,et al.,J.Mater.Chem.A 3(2015)3285-3288.
    [21]N.Youngblood,C.Chen,S.J.Koester,M.Li,Nat.Photonics 9(2015)247.
    [22]S.Liu,S.Lin,P.You,et al.,Angew.Chem.Int.Ed.56(2017)13717-13721.
    [23]W.Zhao,Z.Xue,J.Wang,et al.,ACS Appl.Mater.Interfaces 7(2015)27608-27612.
    [24]X.Zhang,H.Xie,Z.Liu,et al.,Angew.Chem.Int.Ed.54(2015)3653-3657.
    [25]C.Zhu,F.Xu,L.Zhang,et al.,Chem.-Eur.J.22(2016)7357-7362.
    [26]L.Li,Y.Yu,G.J.Ye,et al.,Nat.Nanotechnol.9(2014)372-377.
    [27]L.Kou,T.Frauenheim,C.Chen,J.Phys.Chem.Lett.5(2014)2675-2681.
    [28]Z.Sofer,D.Bousa,J.Luxa,V.Mazanek,M.Pumera,Chem.Commun.52(2016)1563-1566.
    [29]M.Lee,Y.H.Park,E.B.Kang,et al.,ACS Omega 2(2017)7096-7105.
    [30]W.Gu,X.Pei,Y.Cheng,et al.,ACS Sens.2(2017)576-582.
    [31]Z.Sun,H.Xie,S.Tang,et al.,Angew.Chem.127(2015)11688-11692.
    [32]A.H.Woomer,T.W.Farnsworth,J.Hu,et al.,ACS Nano 9(2015)8869-8884.
    [33]P.Yasaei,B.Kumar,T.Foroozan,et al.,Adv.Mater.27(2015)1887-1892.
    [34]Y.C.Lee,Biochem.Biophys.Res.Commun.35(1969)161-167.
    [35]R.Hultgren,N.S.Gingrich,B.E.Warren,J.Chem.Phys.3(1935)351-355.
    [36]Y.Zhao,H.Wang,H.Huang,et al.,Angew.Chem.Int.Ed.55(2016)5003-5007.
    [37]H.U.Lee,S.Y.Park,S.C.Lee,et al.,Small 12(2015)214-219.
    [38]W.Gu,Y.Yan,X.Pei,et al.,Sensor.Actuat.B-Chem.250(2017)601-607.
    [39]M.Zhang,X.Cao,H.Li,et al.,Food Chem.135(2012)1894-1900.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700