粉尘传感器测量喷涂过程细颗粒物(PM_(2.5))分布规律的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Distribution of Fine Particles (PM_(2.5)) in Spraying Process Measured by Dust Sensor
  • 作者:齐建伟 ; 段海涛 ; 李健
  • 英文作者:Qi Jianwei;Duan Haitao;Li Jian;State Key Laboratory of Special Surface Protection Materials and Application Technology,Wuhan Research Institute of Materials Protection;
  • 关键词:涂装 ; 传感器 ; 细颗粒物 ; 分布 ; 检测
  • 英文关键词:painting;;sensor;;fine particulate matter;;distribution;;detection
  • 中文刊名:TLGY
  • 英文刊名:Paint & Coatings Industry
  • 机构:武汉材料保护研究所特种表面保护材料及应用技术国家重点实验室;
  • 出版日期:2019-04-01
  • 出版单位:涂料工业
  • 年:2019
  • 期:v.49;No.418
  • 基金:湖北省自然科学基金面上项目(2017CFB742);; 工信部船舶智能制造关键共性技术专项(17GC26102.02);; 湖北省技术创新专项(2017AAA119)
  • 语种:中文;
  • 页:TLGY201904008
  • 页数:4
  • CN:04
  • ISSN:32-1154/TQ
  • 分类号:46-49
摘要
涂装作业时产生的大量漆雾是重要的细颗粒物(PM_(2.5))污染源之一。开展涂装喷涂时PM_(2.5)分布规律的研究,对于保护工人身体健康、提高大气质量有重要意义。本文使用粉尘传感器分析了喷涂距离、时间、风速、偏移距离等因素对PM_(2.5)分布的影响。结果表明:随着喷涂距离增加,PM_(2.5)浓度开始时逐渐提高,而后逐渐降低,在0. 9~1. 2 m达到最大稳定状态;随着喷涂时间增加,PM_(2.5)浓度逐渐提高;有风时PM_(2.5)浓度迅速降低,随着风速增加,PM_(2.5)浓度逐渐降低;随着距漆雾中心径向偏移距离增大,PM_(2.5)浓度降低,漆雾中心下方PM_(2.5)浓度相对于漆雾中心上方降低较慢;将传感器布置在距离喷嘴0. 9~1. 2 m、漆雾中心下方0. 3~0. 4 m处,可以较好地监测喷漆时PM_(2.5)浓度。
        A large amount of paint mist is produced during the coating operation,which is one of the important pollution sources of fine particulate matter(PM_(2.5)). A research on the distribution of fine particles during spraying process is important for protecting workers' health and improving air quality. In this paper,the influence of spraying distance,time,wind speed and offset distance on PM_(2.5) distribution is analyzed by dust sensor. The results show that,with the increase of spraying distance,PM_(2.5) concentration gradually increases at the beginning and then gradually decreases,reaching the maximum stable state at the distance from 0. 9 m to 1. 2 m. As the spraying time increases,PM_(2.5) concentration gradually increases.The PM_(2.5) concentration decreases rapidly when there is wind. As the wind speed increases,the PM_(2.5) concentration decreases gradually. As the radial offset distance from the center of the paint mist increases,the PM_(2.5) concentration decreases,and PM_(2.5) concentration decreases slowly under the nozzle compared with that above the nozzle. The sensor can be placed at a distance of 0. 9 m to 1. 2 m from the nozzle and 0. 3 m to 0. 4 m below the center of the paint mist to better monitor the PM_(2.5) concentration during painting process.
引文
[1]丁力.船舶涂装工艺技术改造中的环保技术研究[D].广州:华南理工大学,2013.
    [2]沈良之,许海梁.船舶室外涂装过程中挥发性有机化合物排放量的确定[J].环境科学与管理,2009,34(6):48-50.
    [3]范素英,唐建伟.船舶涂装污染处理技术分析[J].船海工程,2008,37(5):36-39.
    [4] SMITH C M,BROWN W E. Elimination of VOC emissions fromsurfacecoatingoperations[J]. Air&Waste,1993,43(7):1015-1019.
    [5]刘可卿.造船企业粉尘污染及治理[J].造船技术,2016(6):8-14.
    [6]陈音瑜,周杰,成亚君.油漆车间过喷漆雾处理及VOC的控制[J].现代涂料与涂装,2015,18(8):44-47.
    [7] SIDDANAGOUDRA S P, KANYAKUMARI D H,NATARAJ S M. Respiratory morbidity in spray paint workers in an automobile sector[J]. International Journal of Health&Allied Sciences,2012,1(4):268-273.
    [8]王书肖,赵斌,吴烨,等.我国大气细颗粒物污染防治目标和控制措施研究[J].中国环境管理,2015,7(2):37-43.
    [9]陈其纯.压力雾化喷嘴雾化特性的实验研究与数值模拟[D].上海:上海交通大学,2016.
    [10]钱丽娟,熊红兵,林建忠.湍动雾化射流液雾粒径分布的数值模拟[J].工程热物理学报,2007,28(2):251-254.
    [11]林鸿亮,刘道银,刘猛,等.喷嘴雾化特性的试验及数值模拟[J].动力工程学报,2015,35(12):998~1005.
    [12]曾卓雄,姜培正,谢蔚明.喷嘴雾化粒径的实验研究[J].西安交通大学学报,2000,34(4):75-77.
    [13]王贞涛,岑旗钢,罗惕乾.双流体喷嘴雾化特性实验[J].化学工程,2010,38(2):26-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700