掺杂类金刚石薄膜制备及其摩擦性能的仿真研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation Preparation of Diamond-like Carbon Film with Inclusions and Its Friction Properties
  • 作者:张岩 ; 肖万伸
  • 英文作者:ZHANG Yan;XIAO Wanshen;College of Mechanical and Vehicle Engineering, Hunan University;School of Mechatronics Engineering, Harbin Institute of Technology;
  • 关键词:类金刚石薄膜 ; 夹杂 ; 分子动力学 ; 快速淬火 ; 摩擦力
  • 英文关键词:diamond-like carbon film;;inclusion;;molecular dynamics;;rapid quenching;;friction force
  • 中文刊名:CLKX
  • 英文刊名:Journal of Materials Science and Engineering
  • 机构:湖南大学机械与运载工程学院;哈尔滨工业大学机电工程学院;
  • 出版日期:2019-04-20
  • 出版单位:材料科学与工程学报
  • 年:2019
  • 期:v.37;No.178
  • 语种:中文;
  • 页:CLKX201902020
  • 页数:7
  • CN:02
  • ISSN:33-1307/T
  • 分类号:105-110+158
摘要
在分子动力学(Molecular dynamics,MD)仿真中利用高温加热和快速淬火,模拟制备出分别含有Cu或Si夹杂的类金刚石(DLC)薄膜,再通过刚性压头对表面的磨损,研究了夹杂含量(0%~30%)及位置分布(上、中、下)对材料摩擦性能的影响。仿真制备出的DLC薄膜密度为2.79g/cm~3,sp~2、sp~3杂化比例分别为36%、62%。摩擦结果表明,对于含Si-DLC复合薄膜,Si-C原子成键影响了材料中sp~3杂化比例,造成摩擦力随着夹杂含量的增加而下降;含Cu-DLC复合薄膜中Cu与C不成键,但一定量的Cu原子能够积聚造成滚珠效应,其摩擦力随夹杂含量增加先增后减。当两种夹杂仅分布在薄膜被摩擦的表面区域时,摩擦力均随夹杂含量的增加而下降;而分布在薄膜中间或底层时,表面的形变受到结构的阻碍难于传播到稍远的中间位置或最底层,因此,当中间层和最低层的夹杂含量改变时对表面磨擦性能的影响不大。
        Diamond-like carbon(DLC) films with Cu/Si inclusions were prepared using high temperature heating and rapid quenching method in molecular dynamics(MD) simulations. Surface wear process was then conducted by a rigid tool to investigate the effects of content(0%~30%) and distribution(upper/middle/lower layer) of inclusions on the friction properties. The prepared DLC film has the density of 2.79 g/cm~3 with sp~2/sp~3 hybridization ratio of 36%, 62%. The friction results show that for the Si-DLC film, Si-C bonding influences the proportion of sp~3 hybridization, and makes the friction force decline with the inclusion content. For the Cu-DLC film, no bonding between Cu and C atoms, and only some copper forms atom clusters acting like ball bearing. The friction force for Cu-DLC increases firstly and then decreases with inclusion content. If Cu or Si is only distributed in the upper surfale layer of the film, friction force will decline with the inclusion content. If they are in the middle or lower layer of the film, the Change of inclusion contest in the middle or lower layer has little effect on the surface friction because of the hindering effect.
引文
[1] Liu N,et al.Boundary Effect on Particle Motion in the Head Disk Interface[J].Tribology Letters,2009,(33):21~27.
    [2] Song W,Matthes L,Ovcharenko A,et al.Experimental Study of Slider Dynamics Induced by Contacts with Disk Asperities[J].Microsystem Technologies,2013,19:1369~1375.
    [3] Ma Y S,Zhou W D,Yu S K,et al.Adsorbed Water Film and Heat Conduction from Disk to Slider in Heat-Assisted Magnetic Recording[J].Tribology Letters,2014,56(1):93~99.
    [4] Hubber W D,Roen M E,Sajid N.Future Hard Disk Drive Front End Challenges[J].IEEE Transactions on Magnetics,2014,50(11):3102404.
    [5] VAkis A I,Polycarpou A A.Optimization of Thermal Fly-Height Control Slider Geometry for Tbit/in2 Recording[J].Microsystem Technologies,2010,16(6):1021~1034.
    [6] Shaomin X,Bogy D B.Flying Height Modulation for a Dual Thermal Protrusion Slider in Heat Assisted Magnetic Recording (HAMR)[J].IEEE Transactions on Magnetics,2013,49(10):5222~5226.
    [7] Ferrari A C.Diamond-like Carbon for Magnetic Storage Disks.[J].Surface and Coating Technology,2004,190:180~181.
    [8] Beghi M G,Ferrari A,Teo K B K,et al.Bonding and Mechanical Properties of Ultra-thin Diamond-like Carbon Films[J].Applied Physics Letter,2002,81(20):3804~3806.
    [9] 谢红希,凌贵,朱正涛.RF-PECVD工艺参数对DLC膜结构及性能的影响[J].材料科学与工程学报,2009,27(2):190~194.
    [10] Erdemir A,Donnet C.Tribology of Diamond-like Carbon Films:Recent Progress and Future Prospects[J].Journal of Physics D,2006,39:311~327.
    [11] Wang Q Z,Zhou F,Zhou Z F,et al.Influence of Ti Content on the Structure and Tribological Properties of Ti-DLC Coatings in Water Lubrication[J].Diamond and Related Materials,2012,25:163~175.
    [12] Harrison J,Gao G T,et al.Friction between Solids[J].Physics Engineering Science,2008,366(1869):1469~1495.
    [13] Zhou B,Jiang J X,Rogachev A V.Growth and Characteristics of Diamond-like Carbon Films with Titanium and Titanium Nitride Functional Layers by Cathode Arc Plasma[J].Surface and Coatings Technology,2013,223:17~23.
    [14] Zhou B,Jiang J X,Rogachev A V.Structure and Mechanical Properties of Diamond-like Carbon Films with Copper Functional Layer by Cathode Arc Evaporation[J].Surface and Coatings Technology,2012,208:101~108.
    [15] 王恒朋,于盛旺,种海宁,等.C/Cu和C/Al复合材料的干摩擦性能[J].材料科学与工程学报,2013,31(6):827~900.
    [16] 贾丁.基于分子动力学的纳米薄膜力学行为研究[D].哈尔滨:哈尔滨工业大学,2012.
    [17] Papakonstantinou P,Zhao J F,Lemoine P,et al.the Effects of Si Incorporation on the Electrochemical and Nanomechanical Properties of DLC Thin Films[J].Diamond and Related Materials,2002,11(31):1074~1080.
    [18] Kennedy F E,Lidhagen D,Erdemir A,et al.Tribological Behavior of Hard Carbon Coatings on Steel Substrates[J].Wear,2003,255(7):854~858.
    [19] Marks N A.Evidence for Subpicosecond Thermal Spikes in the Formation of Tetrahedral Amorphous Carbon[J].Physics Review B,1997,6:2441~2446.
    [20] Marks N A,Cooper N,Mckenzie D,et al.Comparison of Density-functional,Tight-binding,and Empirical methods for the Simulation of Amorphous Carbon [J].Physical Review B.2002,7:075411-1-8.
    [21] Plimpton S.Fast Parallel Algorithms for Short Range Molecular Dynamics [J].Journal of Computing Physics.1995,117:1~19.
    [22] Tersoff J.Emprical Interaction Potential for Carbon with Application to Amorphous Carbon[J].Physical Review Letter.1988,61(25):2879~2882.
    [23] Zhang J J,SUN T,YAN Y D,et al.Molecular Dynamics Study of Scratching Velocity Dependency in AFM-Based Nanometric Scratching Process[J].Materials Science and Engineering:A,2009,505:65~69.
    [24] 代江明.类金刚石薄膜掺杂作用机理及其摩擦学性能[D].广州:华南理工大学,2016.
    [25] Bociaga D,Kaminska M,Sobczyk-Guzenda A,et al.Surface Properties and Biological Behaviour of Si-DLC Coatings Fabricated by a Multi-target DC-RF Magnetron Sputtering Method for Medical Applications[J].Diamond and Related Materials,2016,67:41~50.
    [26] Paik N.Raman and XPS Studies of DLC Films Prepared by a Magnetron Sputter-type Negative Ion Source[J].Surface and Coatings Technology,2005,200:2170~2174.
    [27] Iseki T,Mori H,Hasegawa H,et al.Structure Analysis of Si-containing Diamond-like Carbon[J].Diamond and Related Materials,2006,15:1004~1010.
    [28] Huang L N,Jiang H Q,Zhang J S,et al.Synthesis of Copper Nanoparticles Containing Diamond-like Carbon Films by Electrochemical Method[J].Electrochemistry Communications,2006,8:262~266.
    [29] Chen C C,et al.Structure and Properties of Diamond-like Carbon Nanocompositefilms Containing Copper Nanoparticles[J].Applied Surface Science,2005,242:261~269.
    [30] Dwivedi N,Kumar S,Malik H K,et al.Investigation of Properties of Cu Containing DLC Films Produced by PECVD Process[J].Journal of Physics and Chemistry of Solids,2012,73:308~316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700