达里诺尔湖水中氢、氧稳定同位素组成的空间变化特征及影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatial Variation Characteristics of Composition of Hydrogen and Oxygen Stable Isotopes in Water of Dalinor Lake and Their Influencing Factors
  • 作者:杜蕾 ; 李畅游 ; 李文宝 ; 史小红
  • 英文作者:DU Lei;LI Changyou;LI Wenbao;SHI Xiaohong;Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University;
  • 关键词:氢稳定同位素 ; 氧稳定同位素 ; 空间分布 ; 达里诺尔湖
  • 英文关键词:hydrogen stable isotope;;oxygen stable isotope;;physicochemical index;;space distribution;;Dalinor Lake
  • 中文刊名:KXSD
  • 英文刊名:Wetland Science
  • 机构:内蒙古农业大学水利与土木建筑工程学院;
  • 出版日期:2019-04-15
  • 出版单位:湿地科学
  • 年:2019
  • 期:v.17
  • 基金:国家自然科学基金项目(51469025、51669021和51339002);; 内蒙古自治区自然科学基金项目(2016MS0552和2016MS0406)资助
  • 语种:中文;
  • 页:KXSD201902013
  • 页数:7
  • CN:02
  • ISSN:22-1349/P
  • 分类号:95-101
摘要
在达里诺尔湖中,布设了12个采样点,于2015年8月15日和2016年8月15日(夏季)、2016年1月15~16日和2018年1月15~16日(冬季),分别采集了达里诺尔湖的冰样和水样,并采集了达里诺尔湖周边河水的水样,分析各样品中氢、氧稳定同位素(δD、δ18O)的分布特征,并分析了δD值、δ18O值分别与水中总溶解性固体含量、溶解氧含量和水的电导率的关系。研究结果表明,达里诺尔湖冰、水样品的δD值、δ18O值都大于周边河水;冬季湖泊冰样的δD值、δ18O值最大,分别为-22.11‰和-0.79‰,夏季湖水样品的δD值、δ18O值最小,分别为-32.34‰和-2.05‰;受河水输入的影响,亮子河和贡格尔河入湖口附近的采样点的冰、水样的δD值、δ18O值都比其它采样点小;冬季底层(深度为60~70 cm)冰样的δD值、δ18O值大于表层(深度为0~10 cm)的,而冬季和夏季表层(深度为0~10 cm)水样的δD值、δ18O值都大于其底层(深度>700 cm);冬季和夏季冰、水样的δD值、δ18O值都与水中溶解氧含量显著正相关,而与电导率和总溶解性固体含量显著负相关,表明δD、δ18O值受湖水水质的影响。
        To discuss the spatial variation characteristics of hydrogen and oxygen stable isotopes(δD and δ18 O)values and analyze the influencing factors, 12 sample sites were set in Dalinor Lake and water(ice) samples were collected from the Dalinor Lake, and rivers samples around the lake on August 15 of 2015, August 15 of2016, January 15-16 of 2016 and January 15-16 of 2018. Meanwhile, the relationship of physicochemical indexes(total dissolved solid, dissolved oxygen and conductivity) and δD and δ18 O values were analyzed. The result showed that the δD and δ18 O values of water(ice) in Dalinor Lake were higher than those in rivers around the lake. In addition, the δD and δ18 O values in the ice of the lake were the highest, with average values about-22.11‰ and-0.79‰, respectively. The δD and δ18 O values in the water of the lake were the lowest,with average values about-32.34‰ and-2.05‰, respectively. Specially, the values of δD and δ18 O of DL1 and DL12 sites near the lake inlet were visibly lower than others sites, which indicates that the input of river water had influenced the value change processes of δD and δ18 O in the water and ice samples. Vertically, the values of δD and δ18 O in the ice of 60-70 cm depth were larger than those in surface ice of 0-10 cm depth.Furthermore, the δD and δ18 O values in the water of 0-10 cm depth(or water under lake ice) in summer and winter were higher than those in the water of greater than 700 cm depth. The correlation analysis results showed high positively relationships between the values of δD and δ18 O with dissolved oxygen, but negatively relativity with the conductivity and total dissolved solid. The water quality indexes had visibly effects on the changes of δD and δ18 O values.
引文
[1]张慧,张新基.水文地质学中的环境同位素[M].郑州:黄河水利出版社, 2006.
    [2]顾慰祖.同位素水文学[M].北京:科学出版社, 2011.
    [3]胡海英,包为民,瞿思敏,等.稳定性氢氧同位素在水体蒸发中的研究进展[J].水文, 2007, 2277(3):1-5.
    [4]石辉,刘世荣,赵晓广.稳定性氢氧同位素在水分循环中的应用[J].水土保持学报, 2003, 1177(2):163-166.
    [5]Kim K, Lee X. Isotopic enrichment of liquid water during evaporation from water surfaces[J]. Journal of Hydrology, 2011, 339999(3-4):364-375.
    [6]姚天次,章新平,李广,等.湘江流域岳麓山周边地区不同水体中氢氧稳定同位素特征及相互关系[J].自然资源学报, 2016, 31(7):1198-1210.
    [7]梁丽娥,李畅游,史小红,等.内蒙古呼伦湖流域地表水与地下水氢氧同位素特征及湖水来源分析[J].湿地科学, 2017, 1155(3):385-390.
    [8]张兵,陈清,王中良,等.天津七里海湿地水体的同位素和水化学特征[J].湿地科学, 2016, 1144(6):847-853.
    [9]Currell M J, Dahlhaus P, Ii H. Stable isotopes as indicators of water and salinity sources in a southeast Australian coastal wetland:identifying relict marine water, and implications for future change[J]. Hydrogeology Journal, 2015, 233(2):235-248.
    [10]Cui B L, Li X Y. Characteristics of stable isotope and hydrochemistry of the groundwater around Qinghai Lake, NE QinghaiTibet Plateau[J]. Enviromental Earth Sciences, 2014, 7711(3):1159-1167.
    [11]沈吉,曹建廷.岱海湖水盐度与氧同位素定量关系的建立[J].第四纪研究, 2000, 2200(2):211.
    [12]曾海鳌,吴敬禄.塔吉克斯坦水体同位素和水化学特征及成因[J].水科学进展, 2013, 2244(2):272-279.
    [13]高宏斌,李畅游,孙标,等.呼伦湖流域氢氧稳定同位素特征及其对水体蒸发的指示作用[J].湖泊科学, 2018, 3300(1):211-219.
    [14]李文宝,李畅游,刘晓旭,等.达里诺尔湖水体稳定氢、氧同位素组成变化对结冰过程的响应[J].地球科学, 2015, 4400(12):2081-2090.
    [15]Ma J Z, Ding Z Y, Gates J B, et al. Chloride and the environmental isotopes as the indicators of the groundwater recharge in the Gobi Desert, northwest China[J]. Environmental Geology, 2008,5555(7):1407-1419.
    [16]甄志磊,李畅游,李文宝,等.内蒙古达里诺尔湖流域地表水和地下水环境同位素特征及补给关系[J].湖泊科学, 2014, 2266(6):916-922.
    [17]章新平,姚檀栋,田立德.水体蒸发过程中稳定同位素分馏的模拟[J].冰川冻土, 2003, 2255(1):65-71.
    [18]刘志娇.达里诺尔湖水动力条件及氢氧稳定同位素试验研究[D].呼和浩特:内蒙古农业大学, 2015.
    [19]马妮娜,杨小平.巴丹吉林沙漠及其东南边缘地区水化学和环境同位素特征及其水文学意义[J].第四纪研究, 2008, 2288(4):702-711.
    [20]滕晖,邓云,黄奉斌,等.水库静水结冰过程及冰盖热力变化的模拟试验研究[J].水科学进展, 2011, 2222(5):720-726.
    [21]朱慧敏.计算水中溶解氧饱和率时气压资料的换算问题[J].青海医药杂志, 1980, 66:12-13.
    [22]陈海生,严力蛟.浙江省长潭水库溶解氧变化特性及其与水温相关性[J].科技通报, 2015, 3311(3):249-253.
    [23]杨岳.渭河(咸阳段)水质中溶解氧与水温的相关研究[J].资源节约与环保, 2015, 33:241.
    [24]张岩,李畅游,张生,等.呼伦湖冰封期污染特征分析及对水处理的意义[J].生态环境学报, 2011, 2200(8):1289-1294.
    [25]Winter T C. Recent advances in understanding the interaction of groundwater and surface water[J]. Reviews of Geophysics,1995, 3333(S2):985-994.
    [26]Bencala K E, Kennedy V C, Zellweger G W, et al. Interactions of solutes and streambed sediment:1. An experimental analysis of cation and nion transport in a mountain stream[J]. Water Resources Research, 1984, 2200(12):1797-1803.
    [27]陈明聪.张掖盆地不同水体TDS变化规律及其水文循环指示意义[J].中国非金属矿工业导刊, 2018, 22:61-64.
    [28]王雨山,郭媛.干旱区地下水咸化机制的区域氘盈余解析[J].水文地质工程地质, 2015, 4422(6):29-35.
    [29]文军.千岛湖区域生态风险评价研究[D].长沙:中南林业科技大学, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700