基于MSCR试验及Burgers模型分析的沥青高温性能评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High Temperature Performance Evaluation of Asphalt Based on MSCR Test and Burgers Model Analysis
  • 作者:林江涛 ; 樊亮
  • 英文作者:LIN Jiang-tao;FAN Liang;Key Laboratory for Road Structure and Material of Shandong Province,Shandong Transportation Institute;
  • 关键词:道路工程 ; 高温性能 ; 多应力重复蠕变恢复试验 ; Burgers模型 ; 黏性分量
  • 英文关键词:road engineering;;high temperature performance;;multi-stress creep recovery(MSCR) test;;Burgers model;;viscous component
  • 中文刊名:GLJK
  • 英文刊名:Journal of Highway and Transportation Research and Development
  • 机构:山东省交通科学研究院山东省道路结构与材料重点实验室;
  • 出版日期:2018-06-15
  • 出版单位:公路交通科技
  • 年:2018
  • 期:v.35;No.280
  • 基金:山东省交通科技项目(2012Y01)
  • 语种:中文;
  • 页:GLJK201806004
  • 页数:8
  • CN:06
  • ISSN:11-2279/U
  • 分类号:26-33
摘要
采用多种沥青样品,通过旋转薄膜加热试验(RTFOT)、多应力重复蠕变恢复(MSCR)试验、车辙因子(G*/sinδ)测定以及Burgers模型对不同状态的沥青进行高温性能评价研究。结果表明,由于不同沥青间分子链段及相态结构的不同使改性沥青的不可恢复蠕变柔量差(Jnrdiff)远大于石油沥青,原样改性沥青的Jnrdiff随温度升高呈现无序性;改性沥青老化样品应力敏感性急剧下降,不可恢复蠕变柔量随着温度的升高呈现出逐渐升高的趋势;石油沥青旋转薄膜老化试验前后Jnrdiff变化幅度小,原样石油沥青Jnrdiff随温度的升高逐渐增大的趋势。采用Burgers模型对MSCR试验单循环蠕变加载曲线进行拟合,拟合计算采取固定值与非固定值拟合两种方式,非固定拟合参数法计算的变形分量误差大;将黏性分量(Gv)作为固定值,其他3个参数作为自由变量进行拟合计算,可以消除黏性变形误差大的问题,同时将总变形误差控制在较低程度范围,大大减小拟合误差。由于石油沥青在动态加载及静态蠕变状态下的高温变形都以黏性变形为主导,因此G*/sinδ,Gv评价石油沥青具有高度一致性;改性沥青因为改性剂种类差异,其增强高温性能的机理不同,评价改性沥青不一致。Gv增大了沥青个体间差异程度,进行沥青高温横向对比选择时,更加有利于增弹性改性沥青,而不利于增黏性改性沥青。
        The high-temperature performance evaluation of asphalt in different states is performed by RTFOT,MSCR testing,G*/sin δ measurement and Burgers model on various asphalt samples. The result shows that( 1) the irrecoverable creep compliance difference( Jnrdiff) of modified asphalt is much greater than that of petroleum asphalt due to the difference between molecular chain segments and phase structures,original modified asphalt exhibits a disordered Jnrdiffpattern with increase of temperature;( 2) the stress sensitivity of modified asphalt aging samples drops sharply,and the irrecoverable creep compliance shows a gradual increase with the rise of temperature;( 3) the change of Jnrdiffbefore and after the aging test of petroleum asphalt rotating film is small,and the Jnrdiffof original petroleum asphalt increases gradually with the increase of temperature;( 4) the Burgers model method is used to fit the single cycle creep loading curve of the MSCR test,the fitting calculation applies fixed value and non-fixed value,and the error of the deformationcomponent calculated by the non-fixed fitting parameter method is larger;( 5) if we take viscous component( Gv) as a fixed value and other 3 parameters as free variables during fitting calculations,the error of viscous deformation could be reduced,with the total deformation error being controlled in a small range and the fitting error being reduced greatly;( 6) because the high temperature deformation of petroleum asphalt is dominated by viscous deformation under both dynamic loading and static creep state,the G*/sin δ and Gv have high consistency in evaluating petroleum asphalt;( 7) because of the different types of modifiers,the modified asphalt has different mechanisms for enhancing high temperature performance,Gv increases the difference degree between individual asphalt samples, when lateral selecting and comparing the high-temperature performance of asphalt,it is more beneficial for elastic modified asphalt,while it is unfavorable for viscous modified asphalt.
引文
[1]冯中良,王瑞强,曹荣吉.重复蠕变试验评价沥青高温性能的研究[J].中外公路,2007,27(1):181-183.FENG Zhong-liang,WANG Rui-qiang,CAO Rong-ji.Study on Evaluation of High Temperature Performance of Asphalt by Repeated Creep Test[J].Journal of China&Foreign Highway,2007,27(1):181-183.
    [2]袁迎捷,张争奇,胡长顺.Superpave沥青规范对改性沥青的适用性[J].长安大学学报:自然科学版,2004,24(1):99-102.YUAN Ying-jie,ZHANG Zheng-qi,HU Chang-shun.Applicability of Superpave Specification to Modified Asphalt[J].Journal of Chang'an University:Natural Science Edition,2004,24(1):99-102.
    [3]罗怡琳,于新,孙文浩.橡胶沥青零剪切粘度确定方法的研究[J].公路工程,2012,37(5):218-221.LUO Yi-lin,YU Xin,SUN Wen-hao.Research on Zero Shear Viscosity Determination Method of Rubber Asphalt[J].Highway Engineering,2012,37(5):218-221.
    [4]周庆华,贾瑜.沥青胶结料高温性能试验方法的评价[J].长安大学学报:自然科学版,2008,28(2):9-13.ZHOU Qing-hua,JIA Yu.Evaluation on Test Methods for High Temperature Performance of Asphalt Binders[J].Journal of Chang'an University:Natural Science Edition,2008,28(2):9-13.
    [5]郭咏梅.高温条件下SBS改性沥青重复蠕变恢复试验研究[J].公路工程,2012,37(3):133-135.GUO Yong-mei.Study on Repeated Creep Recovery Test of SBS Modified Asphalt at High Temperatures[J].Highway Engineering,2012,37(3):133-135.
    [6]张肖宁,孟勇军,邹桂莲.基于重复蠕变的改性沥青高温指标[J],华南理工大学学报:自然科学版,2008,36(2):23-29.ZHANG Xiao-ning,MENG Yong-jun,ZOU Gui-lian.High-temperature Index of Modified Asphalt Based on Repeated Creep[J].Journal of South China University of Technology:Natural Science Edition,2008,36(2):23-29.
    [7]AASHTO TP 70—09,Standard Method of Test for Multiple Stress Creep Recovery(MSCR)Test of Asphalt Binder Using a Dynamic Shear Rheometer(DSR)[S].
    [8]朱曼,张肖宁,胡斌,等.基于不同试验方法的沥青高温性能评价[J].交通科学与工程,2015(1):9-13.ZHU Man,ZHANG Xiao-ning,HU Bin,et al.High Temperature Performance Evaluation of the Asphalt Based on Different Test Methods[J].Journal of Transport Science and Engineering,2015(1):9-13.
    [9]曾诗雅,曹正,朱宗凯.基于多应力重复蠕变恢复试验的改性沥青高温性能研究[J].公路工程,2014(1):246-249,268.ZENG Shi-ya,CAO Zheng,ZHU Zong-kai.Study on High Temperature Property of Modified Asphalt Binder Based on Multiple Stress Creep Recovery Test[J].Highway Engineering,2014(1):246-249,268.
    [10]彭煜,熊良铨,刘雁,等.基于流变特性的硬质沥青高温性能评价研究[J].石油沥青,2015,29(1):21-28.PENG Yu,XIONG Liang-quan,LIU Yan,et al.Evaluation Study on High Temperature Performance of Hard Asphalt Based on Rheological Characteristic[J].Petroleum Asphalt,2015,29(1):21-28.
    [11]唐乃膨,黄卫东.基于MSCR试验的SBS改性沥青高温性能评价与分级[J].建筑材料学报,2016,19(4):663-671.TANG Nai-peng,HUANG Wei-dong.High Temperature Performance Evaluation and Grading of SBS Modified Asphalt Based on Multiple Stress Creep Recovery Test[J].Journal of Building Materials,2016,19(4):663-671.
    [12]陈治君,郝培文.基于重复蠕变恢复试验的化学改性沥青高温性能[J].江苏大学学报:自然科学版,2017(4):479-483.CHEN Zhi-jun,HAO Pei-wen.High Temperature Performance of Chemical Modified Asphalt Based on Repeated Creep and Recovery Test[J].Journal of Jiangsu University:Natural Science Edition,2017(4):479-483.
    [13]王琨,郝培文.沥青高温蠕变变形的粘弹性组成研究[J].公路工程,2017(5):122-126,172.WANG Kun,HAO Pei-wen.Study on Asphalt Viscoelasticity Composition of High Temperature Creep[J].Highway Engineering,2017(5):122-126,172.
    [14]赵勇.基于新型蠕变试验仪的沥青蠕变性能研究[D].大连:大连理工大学,2014.ZHAO Yong.Study on Creep Properties of Asphalt Based on New Creep Tester[D].Dalian:Dalian University of Technology,2014.
    [15]王岚,王子豪,李超.基于黏弹性理论的多聚磷酸改性沥青低温性能[J].复合材料学报,2017(2):322-328.WANG Lan,WANG Zi-hao,LI Chao.Low Temperature Performance of Polyphosphoric Acid Asphalt Based on Viscoelastic Theory[J].Acta Materiae Compositae Sinica,2017(2):322-328.
    [16]JTG/TF50—2011,橡胶沥青及混合料设计施工技术指南[S].JTG/TF50—2011,Guide for Design and Construction of Rubber Asphalt and Mixtures[S].
    [17]张肖宁.沥青与沥青混合料的黏弹力学原理及应用[M].北京:人民交通出版社,2006:31-42.ZHANG Xiao-ning.Theory and Application of Viscoelasticity Mechanics for Asphalt and Asphalt Mixture[M].Beijing:China Communications Press,2006:31-42.
    [18]郑健龙,吕松涛,田小革.基于蠕变试验的沥青粘弹性损伤特性[J].工程力学,2008,25(2):193-196.ZHENG Jian-long,LSong-tao,TIAN Xiao-ge.Viscoelastic Damage Characteristics of Asphalt Based on Creep Test[J].Engineering Mechanics,2008,25(2):193-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700