固体酸催化菜籽油酯交换反应与微波耦合特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transesterification and microwave coupling properties of rapeseed oil catalyzed by solid acid
  • 作者:张玉 ; 金光远 ; 宋睿 ; 聂国宇
  • 英文作者:ZHANG Yu;JIN Guangyuan;SONG Rui;NIE Guoyu;School of Mechanical Engineering, Jiangnan University;Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University;
  • 关键词:生物柴油 ; 固体酸催化剂 ; 介电特性 ; 微波 ; 陡降特征
  • 英文关键词:biodiesel;;solid acid catalyst;;dielectric property;;microwave;;characteristics of sharp fall
  • 中文刊名:JSLG
  • 英文刊名:Journal of Jiangsu University(Natural Science Edition)
  • 机构:江南大学机械工程学院;江南大学江苏省食品先进制造装备技术重点实验室;
  • 出版日期:2019-03-10
  • 出版单位:江苏大学学报(自然科学版)
  • 年:2019
  • 期:v.40;No.205
  • 基金:国家自然科学基金资助项目(21606109);; 中央高校基本科研业务费专项资金资助项目(JUSRP51634B);; 江苏省研究生科研与实践创新计划项目(SJCX_0629)
  • 语种:中文;
  • 页:JSLG201902016
  • 页数:5
  • CN:02
  • ISSN:32-1668/N
  • 分类号:102-106
摘要
以甲醇和菜籽油为原料,在固体酸催化剂作用下催化制备生物柴油,考察了反应温度、醇油比、催化剂用量和微波频率对混合物料介电特性的影响,并分析了化学反应体系与微波的耦合能力.试验结果显示:单因素反应条件下,混合物料介电特性随反应时间呈下降趋势;反应温度升高和催化剂用量增大都会使混合物料的介电常数和损耗因素陡降至稳定值的时间点提前,而增加醇油摩尔比起到相反的作用;醇油摩尔比越大,混合物料的介电损耗角正切越大,反应体系与微波的耦合能力越强;微波频率为2 450 MHz时,物料与微波的耦合能力比915 MHz时强.
        Methanol and rapeseed oil were used as raw materials to prepare biodiesel under the action of solid acid catalyst. The effects of reaction temperature, alcohol-oil ratio, catalyst dosage and microwave frequency on dielectric properties of mixtures were investigated, and the coupling ability of chemical reaction system with microwave was also analyzed. The test results show that under the single factor reaction condition, the dielectric properties of mixture are decreased with the increasing of reaction time. Increasing the reaction temperature and the amount of the catalyst can advance the time for the dielectric constant and loss factor of mixture to stable value, and increasing the molar ratio of alcohol to oil has the opposite effect. The more the molar ratio of alcohol to oil is, the bigger the dielectric loss tangent of mixture is, and the stronger the coupling ability with microwave is. When the microwave frequency is 2 450 MHz, the coupling ability of mixture with microwave is stronger than that of 915 MHz.
引文
[ 1 ] 石文英, 李红宾, 程发,等. 新型生物柴油制备方法的研究进展[J]. 石油与天然气化工, 2016, 45(1):1-7.SHI W Y, LI H B, CHENG F, et al. Research progress of preparation methods novel biodiesel[J]. Chemical Engineering of Oil and Gas, 2016, 45 (1): 1-7. (in Chinese)
    [ 2 ] PITCHAI K, BIRLA S L, SUBBIAH J, et al. Coupled electromagnetic and heat transfer model for microwave heating in domestic ovens[J]. Journal of Food Engineering, 2012, 112(1/2): 100-111.
    [ 3 ] HASAN S W U, ANI F N. Review of limiting issues in industrialization and scale-up of microwave-assisted activated carbon production[J]. Industrial & Engineering Chemistry Research, 2014, 53(31): 12185-12191.
    [ 4 ] 袁红, 黎洪双, 刘文丽,等. 响应面法优化微波辅助固体酸催化合成生物柴油[J]. 可再生能源, 2013, 31(10): 86-91.YUAN H, LI H S, LIU W L, et al. Optimization of microwave-assisted solid acid catalyzed synthesis of biodiesel by response surface method[J]. Renewable Energy Resources, 2013, 31(10): 86-91. (in Chinese)
    [ 5 ] MAZUBERT A, TAYLOR C, AUBIN J, et al. Key role of temperature monitoring in interpretation of microwave effect on transesterification and esterification reactions for biodiesel production[J]. Bioresource Technology, 2014, 161: 270-279.
    [ 6 ] 张增强, 孙楠, 高锦明,等. 微波辅助棕榈油制备生物柴油的研究[J]. 中国油脂, 2008, 33(3):53-55.ZHANG Z Q, SUN N, GAO J M, et al. Preparation of biodiesel from palm oil assisted by microwave[J]. China Oils and Fats, 2008, 33(3): 53-55. (in Chinese)
    [ 7 ] 杨学林, 袁金磊, 黄永茂,等. 微波-固体酸催化棉籽油制备生物柴油的研究[J]. 粮油加工, 2009(5): 56-59.YANG X L, YUAN J L, HUANG Y M, et al. Study on preparation of biodiesel from cottonseed oil catalyzed by microwave and solid acid[J]. Cereals and Oils Proces-sing, 2009(5): 56-59. (in Chinese)
    [ 8 ] 邵艺, 崔政伟, 陈海英. 微波辅助炭基固体酸催化地沟油制备生物柴油[J]. 食品与生物技术学报, 2016, 35(3):258-264.SHAO Y, CUI Z W, CHEN H Y. Preparation of biodiesel from waste oil by employing a microwave-assisted carbon-based solid acid catalyst[J]. Journal of Food Science and Biotechnology, 2016, 35(3): 258-264. (in Chinese)
    [ 9 ] 袁佳豪. 微波加热技术在化学反应中的研究与应用[J]. 科技经济导刊, 2017(1):71.YUAN J H. Research and application of microwave heating technology in chemical reactions[J]. Technology and Economic Guide, 2017(1):71. (in Chinese)
    [10] 祝圣远, 王国恒. 微波干燥原理及其应用[J]. 工业炉, 2003, 25(3):42-45.ZHU S Y, WANG G H. Principle and application of microwave drying [J]. Industrial Furnace, 2003, 25(3): 42-45.(in Chinese)
    [11] 杨晓庆, 黄卡玛. 微波与化学反应相互作用中的关键问题讨论[J]. 电波科学学报, 2006, 21(5):802-809. YANG X Q, HUANG K M. Investigation of key problems of interaction between microwave and chemical reaction[J]. Chinese Journal of Radio Science, 2006, 21(5): 802-809.(in Chinese)
    [12] OKAN B S, KOCABAS Z ?, ERGUN A N, et al. Effect of reaction temperature and catalyst type on the formation of boron nitride nanotubes by chemical vapor deposition and measurement of their hydrogen storage capacity[J]. Industrial & Engineering Chemistry Research, 2012, 51(35):11341-11347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700