Graphene Fibers: Advancing Applications in Sensor, Energy Storage and Conversion
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Graphene Fibers: Advancing Applications in Sensor, Energy Storage and Conversion
  • 作者:Guan-Hang ; Yu ; Qing ; Han ; Liang-Ti ; Qu
  • 英文作者:Guan-Hang Yu;Qing Han;Liang-Ti Qu;Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science Ministry of Education, School of Chemistry, Beijing Institute of Technology;
  • 英文关键词:Graphene fibers;;Assembly;;Functionalization;;Sensor;;Energy storage and conversion
  • 中文刊名:GFZK
  • 英文刊名:高分子科学(英文版)
  • 机构:Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science Ministry of Education, School of Chemistry, Beijing Institute of Technology;
  • 出版日期:2019-05-31
  • 出版单位:Chinese Journal of Polymer Science
  • 年:2019
  • 期:v.37
  • 基金:financially supported by the National Key R&D Program of China (Nos. 2017YFB1104300 and 2016YFA0200200);; the National Natural Science Foundation of China (Nos. 51673026, 21674056, 21773007, 21575014, and 11602272);; Beijing Natural Science Foundation (Nos. 2152028 and 2184122);; 111 Project 807012;; the Fundamental Research Funds for the Central Universities (No. 2018CX01017);; Beijing Institute of Technology Research Fund Program for Young Scholars;; the project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology, YBKT18-03)
  • 语种:英文;
  • 页:GFZK201906001
  • 页数:13
  • CN:06
  • ISSN:11-2015/O6
  • 分类号:4-16
摘要
Graphene fibers are a kind of novel carbon fibers assembled by orderly aligned graphene sheets with high flexibility, good conductivity, high thermal conductivity, and low density, which make them possible to be widely used in high-performance and multifunctional compound materials as well as flexible electronic devices. In this review, we summarize the research progress in the synthesis of graphene fibers, and their applications in sensor, energy storage, and energy conversion. Furthermore, the current issues and some prospects for the future trend of graphene fibers are discussed.
        Graphene fibers are a kind of novel carbon fibers assembled by orderly aligned graphene sheets with high flexibility, good conductivity, high thermal conductivity, and low density, which make them possible to be widely used in high-performance and multifunctional compound materials as well as flexible electronic devices. In this review, we summarize the research progress in the synthesis of graphene fibers, and their applications in sensor, energy storage, and energy conversion. Furthermore, the current issues and some prospects for the future trend of graphene fibers are discussed.
引文
1 Donnet, J. B. in Carbon fibers. Marcel Dekker, Inc, 1998.
    2 He, F. in Carbon fiber and graphite fiber. Chemical Industry Press, 2010.
    3 Jeffries, R. Prospects for carbon fibres. Nature 1971,232,304-307.
    4 Frank, E.; Steudle, L. M.; Ingildeev, D.; Sporl, J. M.; Buchmeiser,M. R. Carbon fibers:Precursor systems, processing,structure, and properties. Angew. Chem. Int. Ed. 2014, 53,5262-5298.
    5 Standage, A. E.; Prescott, R. High elastic modulus carbon fibre.Nature 1966, 211, 169-169.
    6 Moreton, R.; Watt, W.; Johnson, W. Carbon fibres of high strength and high breaking strain. Nature 1967, 213, 690-691.
    7 Iijima, S. Helical microtubules of graphitic carbon. Nature1991, 354, 56-58.
    8 Dalton, A. B.; Collins, S.; Munoz, E.; Razal, J. M.; Ebron, V.H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G.; Baughman, R.H. Super-tough carbon-nanotube fibres-these extraordinary composite fibres can be woven into electronic textiles. Nature2003, 423, 703-703.
    9 Ericson, L. M.; Fan,H.; Peng,H. Q.; Davis,V. A.; Zhou, W.;Sulpizio, J.; Wang, Y. H.; Booker, R.; Vavro, J.; Guthy, C.;Parra-Vasquez, A. N. G.; Kim, M. J.; Ramesh, S.; Saini, R. K.;Kittrell, C.; Lavin, G.; Schmidt, H.; Adams, W. W.; Billups, W.E.; Pasquali, M.; Hwang, W. F.; Hauge, R. H.; Fischer, J. E.;Smalley, R. E. Macroscopic, neat, single-walled carbon nanotube fibers. Science 2004, 305, 1447-1450.
    10 Vigolo, B.; Penicaud,A.; Coulon,C.; Sauder, C.; Pailler,R.;Joumet, C.; Bernier, P.; Poulin, P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000,290,1331-1334.
    11 Davis,V. A.; Parra-Vasquez,A. N. G.; Green,M. J.; Rai,P. K.;Behabtu, N.; Prieto, V.; Booker, R. D.; Schmidt, J.; Kesselman,E.; Zhou, W.; Fan, H.; Adams, W. W.; Hauge, R. H.; Fischer, J.E.; Cohen, Y.; Talmon, Y.; Smalley, R. E.; Pasquali, M. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat. NanotechnoL 2009, 4, 830-834.
    12 Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nanotechnology:Spinning continuous carbon nanotube yarns-carbon nanotubes weave their way into a range of imaginative macroscopic applications.Nature 2002, 419, 801-801.
    13 Li, Y. L.; Kinloch, I. A.; Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis.Science 2004, 304, 276-278.
    14 Zhang, M.; Atkinson, K. R.; Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology.Science 2004, 306, 1358-1361.
    15 Zhang, X. B.; Jiang, K. L.; Teng, C.; Liu, P.; Zhang, L.; Kong,J.; Zhang, T. H.; Li, Q. Q.; Fan, S. S. Spinning and processing continuous yarns from 4-inch wafer scale superaligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505-1510.
    16 Weng, W. Z.; He,S. S.; Song, H. Y.; Li,X. Q.; Cao, L. H.; Hu,Y. J.; Cui, J.; Zhou, Q. R.; Peng, H. S.; Su, J. C. Aligned carbon nanotubes reduce hypertrophic scar via regulating cell behavior. ACS Nano 2018, 12, 7601-7612.
    17 He,S. S.; Zhang,Y. Y.; Qiu,L. B.; Zhang,L. S.; Xie,Y.; Pan,J.; Chen, P. N.; Wang,B. J.; Xu, X. J.; Hi,Y. J.; Dinh, C. T.;De Luna, P.; Banis, M. N.; Wang, Z. Q.; Sham, T. K.; Gong, X.G.; Zhang, B.; Peng, H. S.; Sargent, E. H. Chemical-to-electricity carbon:Water device. Adv. Mater. 2018, 30, 1707635.
    18 Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A.Electric field effect in atomically thin carbon films. Science2004, 306, 666-669.
    19 Balandin, A. A.; Ghosh, S.; Bao,W. Z.; Calizo, I.;Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8,902-907.
    20 Lee,C. G.; Wei,X. D.; Kysar,J. W.; Hone,J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.
    21 Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A.Two-dimensional gas of massless dirac fermions in graphene.Nature 2005, 438, 197-200.
    22 Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438, 201-204.
    23 Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.;Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351-355.
    24 Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin,F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett.2008, 100,016602.
    25 Chen, H. J.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S.Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206-209.
    26 Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339-1339.
    27 Brodie, B. C. On the atomic weight of graphite. Philos. Trans.R. Soc. Lond. 1859, 149, 249-259.
    28 Staudenmaier, L. Verfahren zur darstellung der graphitsaure.Ber. Dtsch. Chem. Ges. 1898, 31, 1481-1487.
    29 Si, Y. C.; Samulski, E. T. Synthesis of water soluble graphene.Nano Lett. 2008, 8, 1679-1682.
    30 Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H. M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48,4466-4474.
    31 Moon, K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73-78.
    32 Becerril, H. A.; Mao, J.; Liu,Z.; Stoltenberg, R. M.; Bao, Z.;Chen, Y. S. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008,2,463-470.
    33 McAllister, M. J.; Li, J.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.;Prud'homme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite.Chem. Mater. 2007,19, 4396-4404.
    34 Zhu, Y. W.; Stoller, M. D.; Cai, W. W.; Velamakanni, A.;Piner, R. D.; Chen, D.; Ruoff, R. S. Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 2010, 4, 1227-1233.
    35 Wang, Z. J.; Zhou, X. Z.; Zhang, J.; Boey, F.; Zhang, H. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J. Phys.Chem, C 2009,113, 14071-14075.
    36 Guo, H.; Wang, X.; Qian, Q.; Wang, F.; Xia, X. H. A green approach to the dynthesis of graphene nanosheets. ACS Nano2009, 3, 2653-2659.
    37 Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2006,6, 183-191.
    38 Xu,Z.; Liu,Y.; Zhao, X.; Peng,L.; Sun,H.; Xu,Y.; Ren,X.;Jin, C.; Xu, P.; Wang, M.; Gao, C. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering.Adv. Mater, 2016, 28, 6449-6456.
    39 Liu,Y. J.; Liang,H.; Xu,Z.; Xi,J. B.; Chen,G. F.; Gao, W.W.; Xue, M. Q.; Gao, C. Superconducting continuous graphene fibers via calcium intercalation. ACS Nano 2017, 11,4301-4306.
    40 Lim, L.; Liu, Y. S.; Liu, W. W.; Tjandra, R.; Rasenthiram, L.;Chen, Z. W.; Yu, A. P. All-in-one graphene based composite fiber:toward wearable supercapacitor. ACS Appl. Mater. Interfaces 2017, 9, 39576-39583.
    41 Meng, J.; Nie, W. Q.; Zhang, K.; Xu, F. J.; Ding, X.; Wang, S.R.; Qiu, Y. P. Enhancing electrochemical performance of graphene fiber-based supercapacitors by plasma treatment. ACS Appl. Mater. Interfaces 2018, 10, 13652-13659.
    42 Choi, S. J.; Yu, H. Y.; Jang, J. S.; Kim, M. H.; Kim, S. J.;Jeong, H. S.; Kim, I. D. Nitrogen-doped single graphene fiber with platinum water dissociation catalyst for wearable humidity sensor. Small 2018, 14, 1703934.
    43 Xu, Z.; Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2011, 2, 571.
    44 Xu, Z.; Zhang, Y.; Li, P. G.; Gao, C. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 2012,6, 7103-7113.
    45 Ritchie, R. O. The conflicts between strength and toughness.Nat. Mater. 2011,10,817-822.
    46 Li, M. C.; Zhang, X. H.; Wang, X.; Ru, Y.; Qiao, J. L. Ultrastrong graphene-based fibers with increased elongation.Nano Lett.2016, 16, 6511-6515.
    47 Zhao, Y.; Jiang, C. C.; Hu, C. G.; Dong, Z. L.; Xue, J. L.;Meng, Y. N.; Zheng, N.; Chen, P. W.; Qu, L. T. Large-scale spinning assembly of neat, morphology-defined, graphenebased hollow fibers.ACS Nano 2013, 7, 2406-2412.
    48 Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a onestep hydrothermal process. ACS Nano 2010, 4, 4324-4330.
    49 Dong, Z. L.; Jiang, C. C.; Cheng, H. H.; Zhao, Y.; Shi, G. Q.;Jiang, L.; Qu, L. T. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater. 2012, 24, 1856-1861.
    50 Wu, G.; Tan,P. F.; Wu, X. J.; Peng, L.; Cheng, H. Y.; Wang,C. F.; Chen, W.; Yu, Z. Y.; Chen, S. High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes. Adv. Funct. Mater.2017,27, 1702493.
    51 Hu, C. G.; Zhao, Y.; Cheng, H. H.; Wang, Y. H.; Dong, Z. L.;Jiang, C. C.; Zhai, X. Q.; Jiang, L.; Qu, L. T. Graphene microtubings:Controlled fabrication and site-specific functionalization. Nano Lett. 2012, 12, 5879-5884.
    52 Ma,T.; Gao, H. L.; Cong,H. P.; Yao, H. B.; Wu,L.; Yu,Z. Y.;Chen, S. M.; Yu, S. H. A Bioinspired interface design for improving the strength and electrical conductivity of graphenebased fibers. Adv. Mater. 2018, 30, 1706435.
    53 Li,X. M.; Zhao, T. S.; Wang,K. L.; Yang,Y.; Wei,J. Q.;Kang, F. Y.; Wu,D. H.; Zhu, H. W. Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. Langmuir 2011, 27, 12164-12171.
    54 Li, X.; Sun, P. Z.; Fan, L. L.; Zhu, M.; Wang, K. L.; Zhong, M.L.; Wei, J. Q.; Wu, D. H.; Cheng, Y.; Zhu, H. W. Multifunctional graphene woven fabrics. Sci. Rep. 2012, 2, 395.
    55 Chen, T.; Dai, L. M. Macroscopic graphene fibers directly assembled from CVD-grown fiber-shaped hollow graphene tubes.Angew. Chem. Int. Ed. 2015, 54, 14947-14950.
    56 Hu, C. G.; Zhai, X. Q.; Liu, L. L.; Zhao, Y.; Jiang, L.; Qu, L. T.Spontaneous reduction and assembly of graphene oxide into three-dimensional graphene network on arbitrary conductive substrates. Sci. Rep. 2013, 3, 2065.
    57 Jang, E. Y.; Carretero-Gonzalez, J.; Choi, A.; Kim, W. J.;Kozlov, M. E.; Kim,T.; Kang,T. J.; Baek,S. J.; Kim,D. W.;Park, Y. W.; Baughman, R. H.; Kim, Y. H. Fibers of reduced graphene oxide nanoribbons. Nanotechnology 2012,23,235601.
    58 Zhao, F.; Zhao, Y.; Cheng, H. H.; Qu, L. T. A graphene fibriform responsor for sensing heat, humidity, and mechanical changes. Angew. Chem. Int. Ed. 2015, 54, 14951-14955.
    59 Ding,X. T.; Bai,J.; Xu,T.; Li,C. X.; Zhang,H. M.; Qu,L. T.A novel nitrogen-doped graphene fiber microelectrode with ultrahigh sensitivity for the detection of dopamine. Electrochem.Commun.2016, 72, 122-125.
    60 Zhou, G. M.; Li, F.; Cheng, H. M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7,1307-1338.
    61 Chen,B.; Liu,E. Z.; Cao, T. T.; He,F.; Shi,C. S.; He,C. N.;Ma,L. Y.; Li,Q. Y.; Li,J. J.; Zhao,N. Q. Controllable graphene incorporation and defect engineering in MoS2-TiO2based composites:Towards high-performance lithium-ion batteries anode materials. Nano Energy 2017, 3, 247-256.
    62 Lee, J. G.; Kwon, Y. B.; Ju, J. Y.; Choi, S. H.; Kang, Y. K.; Yu,W. R.; Kim, D. W. Fiber electrode by one-pot wet-spinning of graphene and manganese oxide nanowires for wearable lithiumion batteries. J. Appl. Electrochem. 2017, 47, 865-875.
    63 Wang, B.; Ryu, J. G.; Choi, S. H.; Song, G. J.; Hong, D. K.;Hwang,C. Y.; Chen, X.; Wang,B.; Li,W.; Song,H. K.; Park,S. J.; Ruoff, R. S. Folding graphene film yields high areal energy storage in lithium-ion batteries. ACS Nano 2018,12,1736-1746.
    64 Hoshide, T.; Zheng, Y. C.; Hou, J. Y.; Wang, Z. Q.; Li, Q. W.;Zhao, Z. G.; Ma, R. Z.; Sasaki, T.; Geng, F. X. Flexible lithium-ion fiber battery by the regular stacking of two-dimensional titanium oxide nanosheets hybridized with reduced graphene oxide. Nano Lett.2017, 17, 3543-3549.
    65 Rao, J. Y.; Liu,N. S.; Zhang, Z.; Su,J.; Li,L. Y.; Xiong,L.;Gao, Y. H. All-fiber-based quasi-solid-state lithium-ion battery towards wearable electronic devices with outstanding flexibility and self-healing ability. Nano Energy 2018, 51, 425-433.
    66 Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.;Gogotsi, Y.; Taberna, P. L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat.Nanotechnol. 2010, 5, 651-654.
    67 Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance.Adv. Funct. Mater, 2012, 22, 4501-4510.
    68 Chen, J.; Li, C.; Shi, G. Q. Graphene materials for electrochemical capacitors. J. Phys. Chem. Lett. 2013, 4, 1244-1253.
    69 Huang, L.; Li, C.; Shi, G. Q. High-performance and flexible electrochemical capacitors based on graphene/polymer composite films. J. Mater. Chem. A 2014, 2, 968-974.
    70 Hu, Y.; Cheng, H. H.; Zhao, F.; Chen, N.; Jiang, L.; Feng, Z.H.; Qu, L. T. All-in-one graphene fiber supercapacitors. Nano scale 2014, 6, 6448-6451.
    71 Zhao, Y.; Han, Q.; Cheng, Z. H.; Jiang, L.; Qu, L. T. Integratedgraphene systems by laser irradiation for advanced deviced. Nano Today 2017, 12, 14-30.
    72 Liang, Y.; Wang, Z.; Huang, J.; Cheng, H. H.; Zhao, F.; Hu, Y.;Jiang, L.; Qu, L. T. Series of in-fiber graphene supercapacitors for flexible wearable devices. J. Mater. Chem. A 2015, 3,2547-2551.
    73 Li, Z.; Huang, T.; Gao, W.; Xu, Z.; Chang, D.; Zhang, C.; Gao,C. Hydrothermally activated graphene fiber fabrics for textileelectrodes of supercapacitors. ACS Nano 2017, 11,11056-11065.
    74 Cheng, H. H.; Liu, J.; Zhao, Y.; Hu, C. G.; Zhang, Z. P.; Chen,N.; Jiang, L.; Qu, L. T. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew.Chem. Int.Ed. 2013, 52, 10482-10486.
    75 Cheng, H. H.; Hu, Y.; Zhao, F.; Dong, Z. L.; Wang, Y. H.;Chen, N.; Zhang, Z. P.; Qu, L. T. Moisture-activated torsional graphene-fiber motor. Adv. Mater. 2014, 26, 2909-2913.
    76 Conley, H.; Lavrik, N. V.; Prasai, D.; Bolotin, K. I. Graphene bimetallic-like cantilevers:Probing graphene/substrate interactions. Nano Lett. 2011,11, 4748-4752.
    77 Wang, Y. H.; Bian,K.; Hu, C. G.; Zhang, Z, P.; Chen, N.;Zhang, H. M.; Qu,L. T. Flexible and wearable graphene/polypyrrole fibers towards multifunctional actuator applications. Electrochem. Commun. 2013, 35, 49-52.
    78 Xie,X. J.; Qu,L. T.; Zhou,C.; Li,Y.; Bai,H.; Shi,G. Q.; Dai,L.M. An asymmetrically surface-modified graphene film electrochemical actuator. ACS Nano 2010, 4, 6050-6054.
    79 Liang, J. J.; Huang, Y.; Oh, J. Y.; Kozlov, M.; Sui, D.; Fang, S.L.; Baughman, R. H.; Ma, Y. F.; Chen, Y. S. Electromechanical actuators based on graphene and graphene/Fe3O4 hybrid paper. Adv. Funct. Mater. 2011,21, 3778-3784.
    80 Liu, J.; Wang, Z.; Xie, X. J.; Cheng, H. H.; Zhao, Y.; Qu, L. T.A rationally-designed synergetic polypyrrole/graphene bilayer actuator. J. Mater. Chem. 2012, 22, 4015-4020.
    81 Huang,Y.; Liang, J. J.; Chen, Y. S. The application of graphene based materials for actuators. J. Mater. Chem. 2012,22, 3671-3679.
    82 Zhu, C. H.; Lu, Y.; Peng, J.; Chen, J. F.; Yu, S. H. Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote lightcontrolled liquid microvalves. Adv. Funct. Mater. 2012, 22, 4017-4022.
    83 Wu, C. Z.; Feng, J.; Peng, L. L.; Ni, Y.; Liang, H. Y.; He, L.H.; Xie, Y. Large-area graphene realizing ultrasensitive photothermal actuator with high transparency:New prototype robotic motions under infrared-light stimuli. J. Mater. Chem. 2011,21, 18584-18591.
    84 Zhang, J.; Zhao, F.; Zhang, Z. P.; Chen, N.; Qu, L. T. Dimension-tailored functional graphene structures for energy conversion and storage. Nanoscale 2013, 5, 3112-3126.
    85 Lu,L. H.; Liu, J. H.; Hu,Y.; Zhang,Y. W.; Chen, W.Graphene-stabilized silver nanoparticle electrochemical electrode for actuator design. Adv. Mater. 2013, 25, 1270-1274.
    86 Liang, J. J.; Huang, L.; Li, N.; Huang, Y.; Wu, Y. P.; Fang, S.L.; Oh,J. Y.; Kozlov,M.; Ma,Y. F.; Li,F. F.; Baughman, R.;Chen, Y. S. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene. ACS Nano 2012, 6, 4508-4509.
    87 Cheng, H. H.; Huang, Y. X.; Shi, G. Q.; Jiang, L.; Qu, L. T.Graphene-based functional architectures:Sheets regulation and macrostructure construction toward actuators and power generators. Chem. Res. 2017, 50, 1663-1671.
    88 Liang, Y.; Zhao, F.; Cheng, Z. H.; Zhou, Q. H.; Shao, H. B.; Jiang, L.; Qu, L. T. Self-powered wearable graphene fiber for information expression. Nano Energy 2017, 32, 329-335.
    89 Yang, Z. B.; Sun,H.; Chen, T.; Qiu,L. B.; Luo, Y. F.; Peng,H.S. Photovoltaic wire derived from a graphene composite fiber achieving an 8.45%energy conversion efficiency. Angew.Chem. Int. Ed. 2013, 52, 7545-7548.
    90 Zou, Y. H.; Yang, X. F.; Lv, C. X.; Liu, T. C.; Xia, Y. Z.;Shang, L.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R.Multishelled Ni-rich Li(NixCoyMnz)O2 hollow fibers with low cation mixing as high-performance cathode materials for Li-ion batteries. Adv. Sci. 2017, 4, 1600262.
    91 Xu, J.; Chen,Z. Y.; Zhang, H. W.; Lin, G. B.; Wang, X. X.;Long, J. L. Cd3(C3N3S3)2 coordination polymer/graphene nanoarchitectures for enhanced photocatalytic H2O2 production under visible light. Sci. Bull. 2017, 62, 610-618.
    92 Shang,L.; Bian,T.; Zhang, B. H.; Zhang,D. H.; Wu,L. Z.;Tung, C. H.; Yin, Y. D.; Zhang, T. R. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica:Robust catalysts for oxidation and reduction reactions. Angew.Chem. Int. Ed. 2014, 53, 250-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700