响应性纳米药物递送系统构建及肿瘤治疗研究
详细信息    查看全文 | 推荐本文 |
  • 作者:戴亮亮 ; 刘军杰 ; 周骏 ; 罗忠 ; 蔡开勇
  • 中文刊名:YISX
  • 英文刊名:Journal of Medical Biomechanics
  • 机构:重庆大学生物工程学院;
  • 出版日期:2019-07-15
  • 出版单位:医用生物力学
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金委重点项目;; 国家杰出青年基金项目(51825302,21734002)
  • 语种:中文;
  • 页:YISX2019S1044
  • 页数:2
  • CN:S1
  • ISSN:31-1624/R
  • 分类号:37-38
摘要
背景恶性肿瘤是威胁人类健康和生命的重大疾病之一。传统临床手术、放疗及化疗治疗手段仍存在诸多缺陷,如易复发、无靶向特异性、多药耐药性及严重毒副作用等。纳米颗粒药物载体由于其独特的增强渗透性和滞留性(EPR)效应,在提高抗肿瘤药物生物利用率、增强疗效以及减少毒副作用方面发挥着重要作用~([1])。智能药物递送系统一般以纳米颗粒为药物载体,通过多功能修饰手段整合诸如刺激响应性释放机制以及靶向分子等策略来构建。介孔硅纳米颗粒、铁磁纳米颗粒以及聚合物胶束等常被用作抗肿瘤纳米药物载体,受到人们广泛关注。抗肿瘤药物载体与宿主肿瘤及正常细胞/组织相互作用,与载体表界面性质密切相关。纳米药物载体的细胞或免疫毒性、药物泄露的毒副作用,亟需避免。同时,载体在体内转运过程中需历经循环(清除)、组织(渗透)及细胞层面(胞吞、释药)等各级生物屏障,亟待克服~([2])。因而,如何优化药物载体及表界面设计,提高载体的生物安全性与有效性,克服诸多生物屏障,利用肿瘤微环境生理信号(GSH、pH、酶、ROS等)触发药物定点释放,提高药物生物利用度,是发展高效药物控释系统的关键科学问题。结果和讨论受肿瘤微环境启发,课题组提出以细胞外基质生物大分子表面功能化药物控释载体的新策略。以细胞外基质组分胶原作为纳米介孔硅(MSNs)封堵剂、天然半乳糖酸为靶向分子构建的氧化还原响应性药控系统,显著地提高了系统的生物相容性及肿瘤细胞的摄取量,降低了对正常细胞的损害。后续研究以细胞色素、肝素、白蛋白等表面功能化介孔硅载药系统,有效地提高了细胞吞噬、诱发细胞凋亡、抑制肿瘤生长及降低对正常组织(肝、肾、脾、肺等)的毒副作用。更重要的是,以明胶、牛血清白蛋白及溶菌酶等天然蛋白修饰的MSNs颗粒,显著地降低药物载体的免疫毒性。利用转铁蛋白表面功能化中空介孔硅(HMSNs),实现靶向药物输送及肿瘤抑制,并降低炎症响应。随着逐步深入理解肿瘤的复杂性,意识到除提高药物控释系统的生物安全性外,如何优化药物载体及表界面设计,克服肾清除、单核细胞系统清除、肿瘤异质化致密细胞外基质、细胞膜障碍、内涵体包裹及多药耐药性等时序性生物障碍,最终提高药物有效递送效率,亟待深入探究。针对肿瘤致密细胞外基质导致纳米药控系统难以渗透至肿瘤深处的问题,采用吉西他滨加载的HMSNs大颗粒携带顺铂前药-树枝状分子小颗粒(10 nm)策略,制备了尺寸可变的复合纳米系统。在肿瘤弱酸条件下,聚合物电荷反转,释放顺铂前药小颗粒,实现肿瘤深层渗透和释药,抑制肿瘤生长。进而,鉴于免疫抑制是肿瘤疗效差和复发的重要因素,课题组利用PCPP胶束加载免疫检查点PD-L1 siRNA和线粒体靶向光敏剂MTPP,构建了尺寸变小/电荷增高、具有增强肿瘤渗透的pH响应性药物递送系统。PCPP胶束在肿瘤微酸性条件下,剥离外层PEG,暴露PEI中间层,导致其尺寸变小和表面正电荷增加,提高肿瘤渗透和细胞摄取。胶束在溶酶体低pH值环境质子化,触发溶酶体逃逸,胞内释放siRNA及MTPP,解除肿瘤免疫抑制。通过光动力(PDT)产生大量ROS,诱导细胞凋亡,暴露相关抗原及加速抗原递呈,激活抗肿瘤免疫响应,实现对肿瘤细胞的高效免疫杀伤~([3])。该光动力-免疫联合治疗策略为抑制肿瘤生长及复发提供新思路。针对肿瘤低氧微环境,利用聚苯硫醚(PSS)在单线氧或ROS氧化作用下从疏水向亲水转变的特性,制备了靶向胶束药控系统,实现细胞溶酶体逃逸释药,抑制肿瘤生长。利用喜树碱(CPT)前药策略,引入pH敏感和溶酶体逃逸的多叔胺PDEA大分子,构建了肿瘤细胞膜、线粒体双靶向的pH/GSH级联响应性胶束药物递送系统。借助PDT效应,激活线粒体损伤介导的Caspase-9/3凋亡通路,实现化疗和PDT联合治疗,抑制肿瘤生长。以普鲁士蓝中空纳米颗粒(PHPBNs)加载葡萄糖氧化酶(GOx),透明质酸高分子封堵及靶向,并链接PEG提高其循环时间,构建了克服低氧环境的药控系统,实现自增强"饥饿"和低温光热的肿瘤联合治疗。具体讲,释放的GOx消耗肿瘤组织内氧气、葡萄糖及ATP水平,而PHPBNs分解肿瘤组织间H2O2为氧气,强化"饥饿"效应。同时,该系统还显著抑制热休克蛋白的表达,提高肿瘤对低温热疗的敏感性~([4])。基于环糊精的疏水性空腔结构和超分子自组装,在Fe304纳米颗粒表面以双硫键接枝由聚乙烯胺和β-环糊精(PEI/β-CD)组成的纳米储存器,加载喜树碱药物。PEI分子的"质子海绵效应",使载药系统从细胞内涵体逃逸,实现胞内释药,诱导细胞凋亡及肿瘤抑制。利用四甘醇分子与α-环糊精组成的分子机器封堵中空介孔硅,以"点击化学"接枝叶酸分子,实现药物高效加载和体内/外还原响应性靶向释物,抑制肿瘤生长。基于药控系统在肿瘤微环境转运过程中级联pH变化,设计了以β-CD为封堵剂的PH级联响应性HMSNs药控系统。利用肿瘤微环境弱酸性(PH 6.8)使PEG保护层脱落,实现电荷反转,克服细胞膜障碍,提高细胞摄取;内涵体低酸性使β-环糊精脱落,胞内原位释药,诱导细胞凋亡及抑制肿瘤。基于肿瘤微环境金属基质蛋白酶(MMP)过量表达,利用含细胞穿膜肽及MMP裂解底物多肽设计了MMP-2/-13响应性药控系统,提高其血液稳定性,降低巨噬细胞激活及吞噬,抑制肿瘤生长。针对耐药性问题,设计了多功能硅包金复合纳米药控系统。颗粒表面的功能聚合物(CS(DMA)-PEG)可提高血液稳定性,改性功能肽RLA既增加细胞摄取又靶向线粒体,在NIR照射下实现多重协同增强的光热-光动力治疗。利用介孔聚多巴胺纳米颗粒,借助π-π堆积和疏水作用,实现阿霉素和肿瘤耐药抑制剂的高效加载,实现对多药耐药肿瘤细胞的光热-化疗的协同抑制。最近,利用前药胶束加载β-拉帕醌,构建pH/ROS级联响应性药物递送系统,实现自增强氧化-化疗联合抗肿瘤治疗,并克服肿瘤多药耐药性~([5])。结论针对药物载体潜在的生物安全性,提出细胞外基质生物大分子表面功能化的新策略。针对克服肿瘤生物屏障(循环、组织及细胞层面)药物载体及表界面设计,提出剥离性PEG保护层、白蛋白表面功能化、颗粒尺寸变小、电荷反转、局部送氧、级联双靶向、溶酶体/内涵体逃逸、PDT/免疫联合治疗等策略。
        
引文
[1] Bray F,Ferlay J,Soerjomataram I,Siegel RL,Torre LA,Jemal A. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin.,2018,68:394-424.
    [2] Liu JJ,Li MH,Luo Z,Dai LL,Guo XM,Cai KY. Design of nanocarriers based on complex biological barriers in vivo for tumor therapy. Nano Today 2017,15:56-90.
    [3] Dai LL,Li K,Li MH,Zhao XJ,Luo Z,Lu L,Luo YF,Cai KY. Size/charge changeable acidity-responsive micelleplex for photodynamic-improved PD-L1 immunotherapy with enhanced tumor penetration. Adv Funct Mater,2018,28:1707249.
    [4] Zhou J,Li MH,Luo Z,Chen QF,Cao H,Huo RL,Xue CC,Sutrisno L,Hao L,Cao Y,Ran HT,Lu L,Li K,Cai KY. Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy. ACS Nano,2018,12:2858-2872.
    [5] Dai LL,Li X,Duan XL,Li MH,Niu PY,Xu HY,Cai KY,Yang H. A p H/ROS cascade-responsive charge-reversal nanosystem with self-amplified drug release for synergistic oxidation-chemotherapy. Adv Sci,2019,6:1801807.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700