65nm工艺SRAM低能质子单粒子翻转错误率预估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Error Rate Prediction of Low Energy Proton Induced Single Event Upset for 65nm SRAM
  • 作者:何安林 ; 郭刚 ; 沈东军 ; 刘建成 ; 史淑廷
  • 英文作者:HE Anlin;GUO Gang;SHEN Dongjun;LIU Jiancheng;SHI Shuting;China Institute of Atomic Energy;
  • 关键词:质子单粒子翻转 ; 空间辐射环境 ; 错误率预估
  • 英文关键词:proton single event upset;;space radiation environment;;error rate prediction
  • 中文刊名:YZJS
  • 英文刊名:Atomic Energy Science and Technology
  • 机构:中国原子能科学研究院核物理研究所;
  • 出版日期:2018-10-25 11:04
  • 出版单位:原子能科学技术
  • 年:2019
  • 期:v.53
  • 基金:国家青年科学基金资助项目(11505295)
  • 语种:中文;
  • 页:YZJS201902025
  • 页数:7
  • CN:02
  • ISSN:11-2044/TL
  • 分类号:179-185
摘要
质子单粒子效应是纳米工艺集成电路空间应用面临的主要辐射问题之一。本文开展了一款商业级65 nm工艺4 M×18 bit随机静态存储器(SRAM)质子单粒子翻转实验研究。针对地球同步轨道、低地球轨道,使用Space Radiation 7.0程序,预估了低能质子、高能质子和重离子引起的错误率。错误率预估分析结果表明,不同轨道及环境模型下低能质子错误率占总错误率的比例范围为1%~86%,其中太阳质子事件、地球俘获带等环境模型中低能质子单粒子翻转引起的错误率占主导,建议空间应用的元器件对低能质子不敏感。
        The single event effect induced by proton is main radiation problem of nanometre integrated circuit applied in spacecraft. In this paper, the low energy proton induced single event upset test was carried out on a 65 nm process, 4 M×18 bit static random access memory(SRAM). The error rate caused by low energy proton, high energy proton and heavy ion was estimated by using Space Radiation 7.0 program for geosynchronous orbit and low earth orbit. The prediction result of error rate shows that the error rate of low energy proton accounts for 1%-86% of the total error rate under different orbits and environmental modes, and the error rate caused by low energy proton is dominant in environmental modes such as solar proton event and earth capture zone. It is suggested that the components in space application should be insensitive to low energy proton.
引文
[1] GINET G P, O’BRIEN T P, HUSTON S L, et al. AE9, AP9 and SPM: New models for specifying the trapped energetic particle and space plasma environment[J]. Space Science Reviews, 2013, 179(1-4): 579-615.
    [2] DODDS N A, MARTINEZ M J, DODD P E, et al. The contribution of low-energy protons to the total on-orbit SEU rate[J]. IEEE Transactions on Nuclear Science, 2015, 62(6): 2 440-2 451.
    [3] SEIFERT N, GILL B, PELLISH J A, et al. The susceptibility of 45 and 32 nm bulk CMOS latches to low-energy protons[J]. IEEE Transactions on Nuclear Science, 2011, 58(6): 2 711-2 718.
    [4] CHATTERJEE I, NARASIMHAM B, MAHATME N N, et al. Impact of technology scaling on SRAM soft error rates[J]. IEEE Transactions on Nuclear Science, 2014, 61(6): 3 512-3 518.
    [5] PETERSEN E. Soft errors due to protons in the radiation belt[J]. IEEE Transactions on Nuclear Science, 1981, 28(6): 3 981 -3 986.
    [6] RODBELL K P, HEIDEL D F, TANG H H K, et al. Low-energy proton-induced single-event-upsets in 65 nm node, silicon-on-insulator, latches and memory cells[J]. IEEE Transactions on Nuclear Science, 2007, 54(6): 2 474-2 479.
    [7] HEIDEL D F, MARSHALL P W, LABEL K A, et al. Low energy proton single-event-upset test results on 65 nm SOI SRAM[J]. IEEE Transactions on Nuclear Science, 2008, 55(6): 3 394-3 400.
    [8] HEIDEL D F, MARSHALL P W, PELLISH J A, et al. Single-event upsets and multiple-bit upsets on a 45 nm SOI SRAM[J]. IEEE Transactions on Nuclear Science, 2009, 56(6): 3 499-3 504.
    [9] SIERAWSKI B D, PELLISH J A, REED R A, et al. Impact of low-energy proton induced upsets on test methods and rate predictions[J]. IEEE Transactions on Nuclear Science, 2009, 56(6): 3 085-3 092.
    [10] CANNON E H, CABANAS-HOLMEN M, WERT J, et al. Heavy ion, high-energy, and low-energy proton SEE sensitivity of 90 nm RHBD SRAMs[J]. IEEE Transactions on Nuclear Science, 2010, 57(6): 3 493-3 499.
    [11] 何安林,郭刚,陈力,等. 65 nm工艺SRAM低能质子单粒子翻转实验研究[J]. 原子能科学技术, 2014,48(12):2 364-2 369. HE Anlin, GUO Gang, CHEN Li, et al. Single event upset test of low energy proton on 65 nm SRAM[J]. Atomic Energy Science and Technology, 2014, 48(12): 2 364-2 369(in Chinese).
    [12] 何安林,郭刚,沈东军,等. 现代纳米集成电路质子单粒子效应研究进展[J]. 现代应用物理,2015,6(2):118-124. HE Anlin, GUO Gang, SHEN Dongjun, et al. Research progress of proton single-event-effects on nano-ICs[J]. Modern Applied Physics, 2015, 6(2): 118-124(in Chinese).
    [13] HE Anlin, GUO Gang, SHI Shuting, et al. Experimental research of heavy ion and proton induced single event effects for a Bi-CMOS technology DC/DC converter[J]. Journal of Semiconductors, 2015, 36(11): 116-120.
    [14] ROCHE P, GASIOT G, UZNANSKI S, et al. Commercial 65 nm CMOS technology for space applications: Heavy ion, proton and gamma test results and modeling[J]. IEEE Transactions on Nuclear Science, 2009, 57(4): 2 079-2 088.
    [15] SCHWANK J R, SHANEYFELT M R, DODD P E, et al. Hardness assurance test guideline for qualifying devices for use in proton environments[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 2 171-2 178.
    [16] HUBERT G, DUZELLIER S, BEZERRA F, et al. MUSCA SEP3 contributions to investigate the direct ionization proton upset in 65 nm technology for space, atmospheric and ground applications[C]//European Conference on Radiation and Its Effects on Components and Systems. Bruges: IEEE, 2009: 179-186.
    [17] DUZELLIER S, ECOFFET R, BEZERRA F, et al. Low energy proton induced SEE in memories[J]. IEEE Transactions on Nuclear Science, 1997, 44(6): 2 306 -2 310.
    [18] DODDS N A, DODD P E, SHANEYFELT M R, et al. New insights gained on mechanisms of low-energy proton-induced SEUs by minimizing energy straggle[J]. IEEE Transactions on Nuclear Science, 2015, 62(6): 2 822-2 829.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700