基于光子晶体光纤表面等离子体共振的温度和磁场双参量传感器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Temperature and Magnetic Field Sensor Based on Photonic Crystal Fiber and Surface Plasmon Resonance
  • 作者:李佳欢 ; 裴丽 ; 王建帅 ; 吴良英 ; 宁提纲 ; 郑晶晶
  • 英文作者:Li Jiahuan;Pei Li;Wang Jianshuai;Wu Liangying;Ning Tigang;Zheng Jingjing;Key Laboratory of All Optical Network and Advanced Telecommunication Network of Ministry of Education,Institute of Lightwave Technology, Beijing Jiaotong University;
  • 关键词:传感器 ; 光子晶体光纤 ; 表面等离子体共振 ; 磁流体 ; 光纤传感 ; 双参量传感
  • 英文关键词:sensors;;photonic crystal fiber;;surface plasmon resonance;;magnetic fluid;;optical fiber sensing;;dual parameter sensing
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室;
  • 出版日期:2018-11-23 10:15
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.506
  • 基金:国家自然科学基金(61525501,61827817)
  • 语种:中文;
  • 页:JJZZ201902033
  • 页数:8
  • CN:02
  • ISSN:31-1339/TN
  • 分类号:251-258
摘要
设计了一种光子晶体光纤(PCF)结构,基于新结构PCF和表面等离子体共振(SPR)效应实现了温度与磁场双参量传感。采用全矢量有限元方法对该传感器的理论模型进行了分析,结果表明,当温度在20~50℃内时,传感器的温度灵敏度可达-493.6 pm/℃;当磁感应强度在20~300 Oe内时,传感器的磁场灵敏度可达82.69 pm/Oe。
        A novel photonic crystal fiber(PCF) structure is designed. A sensor based on the newly designed PCF and surface plasmon resonance(SPR) is proposed, which is applied to temperature and magnetic field detection. The theoretical model is analyzed by the full-vector finite element method. The results demonstrate that the temperature sensitivity is-493.6 pm/℃ with temperature from 20 ℃ to 50 ℃, and the magnetic field sensitivity is 82.69 pm/Oe with magnetic field from 20 Oe to 300 Oe.
引文
[1] Zu P, Chan C C, Lew W S, et al. Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber[J]. IEEE Photonics Journal, 2012, 4(2): 491-498.
    [2] Layeghi A, Latifi H, Frazao O. Magnetic field sensor based on nonadiabatic tapered optical fiber with magnetic fluid[J]. IEEE Photonics Technology Letters, 2014, 26(19): 1904-1907.
    [3] Zhao Y, Cao Y, Tong Z R, et al. Simultaneous measurement of dual-parameter based on optical fiber magnetic field sensor[J]. Acta Photonica Sinica, 2016, 45(12): 1206004. 赵月, 曹晔, 童峥嵘, 等. 可双参量同时测量的光纤磁场传感器[J]. 光子学报, 2016, 45(12): 1206004.
    [4] Lei X Q, Chen J J, Shi F Q, et al. Magnetic field fiber sensor based on the magneto-birefringence effect of magnetic fluid[J]. Optics Communications, 2016, 374: 76-79.
    [5] Wang H T, Pu S L, Wang N, et al. Magnetic field sensing based on singlemode-multimode-singlemode fiber structures using magnetic fluids as cladding[J]. Optics Letters, 2013, 38(19): 3765-3768.
    [6] Shen T, Sun B C, Feng Y. Mach-Zehneder interference all-fiber sensor for measurement of magnetic field and temperature[J]. Optics and Precision Engineering, 2018, 26(6): 1338-1345. 沈涛, 孙滨超, 冯月. 马赫-曾德尔干涉集成化的全光纤磁场与温度传感器[J]. 光学精密工程, 2018, 26(6): 1338-1345.
    [7] Du C, Wang Q, Zhao Y, et al. Highly sensitive temperature sensor based on an isopropanol-filled photonic crystal fiber long period grating[J]. Optical Fiber Technology, 2017, 34: 12-15.
    [8] Hu D J J, Ho H P. Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications[J]. Advances in Optics and Photonics, 2017, 9(2): 257-314.
    [9] Wei Y, Su Y D, Liu C L, et al. Micro-displacement optical fiber sensor based on surface plasmon resonance[J]. Laser & Optoelectronics Progress, 2018, 55(4): 040606. 魏勇, 苏于东, 刘春兰, 等. 基于表面等离子体共振的微位移光纤传感器[J]. 激光与光电子学进展, 2018, 55(4): 040606.
    [10] Peng Y, Hou J, Huang Z H, et al. Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber[J]. Applied Optics, 2012, 51(26): 6361-6367.
    [11] Feng L H, Zeng J, Liang D K, et al. Development of fiber-optic surface plasmon resonance sensor based on tapered structure probe[J]. Acta Physica Sinica, 2013, 62(12): 124207. 冯李航, 曾捷, 梁大开, 等. 契形结构光纤表面等离子体共振传感器研究[J]. 物理学报, 2013, 62(12): 124207.
    [12] Li M Q, Peng L, Zhou G Y, et al. Design of photonic crystal fiber filter with narrow width and single-polarization based on surface plasmon resonance[J]. IEEE Photonics Journal, 2017, 9(3): 1-8.
    [13] Wang Y, Huang Q, Zhu W J, et al. Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film[J]. Optics Express, 2018, 26(2): 1910-1917.
    [14] Tong K, Dang P, Wang M T, et al. Enhancement of sensitivity of photonic crystal fiber surface plasmon resonance biosensor using TiO2 film[J]. Chinese Journal of Lasers, 2018, 45(6): 0610002. 童凯, 党鹏, 汪梅婷, 等. 采用TiO2薄膜增强光子晶体光纤表面等离子体共振生物传感器灵敏度的建模分析[J]. 中国激光, 2018, 45(6): 0610002.
    [15] Ying Y, Zhao Y, Lv R Q, et al. Magnetic field measurement using surface plasmon resonance sensing technology combined with magnetic fluid photonic crystal[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(1): 170-176.
    [16] Hernández-Romano I, Monzón-Hernández D, Moreno-Hernández C, et al. Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer[J]. IEEE Photonics Technology Letters, 2015, 27(24): 2591-2594.
    [17] Markos C, Vlachos K, Kakarantzas G. Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber[J]. Optics Express, 2010, 18(23): 24344-24351.
    [18] Otupiri R, Akowuah E K, Haxha S. Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications[J]. Optics Express, 2015, 23(12): 15716-15727.
    [19] Wang Q, Du C, Zhang J M, et al. Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating[J]. Optics Communications, 2016, 377: 89-93.
    [20] Takagi K, Watanabe K. Near infrared characterization of hetero-core optical fiber SPR sensors coated with Ta2O5 film and their applications[J]. Sensors, 2012, 12(2): 2208-2218.
    [21] Cheng W H, Chi S F, Chu A K. Effect of thermal stresses on temperature dependence of refractive index for Ta2O5 dielectric films[J]. Thin Solid Films, 1999, 347(1/2): 233-237.
    [22] Li B Y, Sheng Z C, Wu M, et al. Sensitive real-time monitoring of refractive indices and components using a microstructure optical fiber microfluidic sensor[J]. Optics Letters, 2018, 43(20): 5070-5073.
    [23] Zhao Y, Zhang Y Y, Wu D, et al. Magnetic field and temperature measurements with a magnetic fluid-filled photonic crystal fiber Bragg grating[J]. Instrumentation Science & Technology, 2013, 41(5): 463-472.
    [24] Schneider F, Draheim J, Kamberger R, et al. Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS[J]. Sensors and Actuators A: Physical, 2009, 151(2): 95-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700