铁磁材料低温磁性能测量研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Measurement of Magnetic Properties of Ferromagnetic Materials at Low Temperature
  • 作者:汪天龙 ; 邱清泉 ; 靖立伟 ; MyongChol.Ri ; 丁大伟
  • 英文作者:Wang Tianlong;Qiu Qingquan;Jing Liwei;MyongChol.Ri;Ding Dawei;Key Laboratory of Applied Superconductivity,Chinese Academy of Sciences;Institute of Electrical Engineering,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Institute of Physics,Chinese Academy of Sciences;
  • 关键词:软磁材料 ; 磁化曲线 ; 损耗曲线 ; 磁控溅射阴极
  • 英文关键词:soft magnetic material;;magnetization curve;;resistive loss curve;;magnetron sputtering cathode
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:中国科学院应用超导重点实验室;中国科学院电工研究所;中国科学院大学;中国科学院物理研究所;
  • 出版日期:2019-03-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.392
  • 基金:国家自然科学基金(51277172);国家自然科学基金创新研究群体科学基金(51721005)
  • 语种:中文;
  • 页:COSE201903031
  • 页数:7
  • CN:03
  • ISSN:61-1154/TG
  • 分类号:202-208
摘要
采用模拟冲击法研究了铁磁材料在300和77 K环境下的磁性能。以电工领域常用的铁磁材料DT4、1J22、2Cr13和非晶FeSiB为研究对象。结果表明,在液氮环境下,DT4、1J22、2Cr13和非晶FeSiB的饱和磁感应强度均略有增加,其中非晶FeSiB的饱和磁感应强度增幅最大为5.3%; DT4、非晶FeSiB和2Cr13的矫顽力增幅较大,DT4的矫顽力增幅为106%,而1J22的矫顽力减小了1.7%;频率为50 Hz时,在液氮环境下DT4的损耗相比室温急剧增加,增幅达263.2%,非晶FeSiB和2Cr13的损耗相比室温略有增加,而1J22的损耗相比室温变化不大。最后,以超导线圈激磁的强磁场磁控溅射阴极的磁场计算为例,在铁芯结构相同的情况下,采用1J22作铁芯的磁控阴极靶面磁场水平分量的最大值为0.2344T,相比2Cr13作铁芯磁场水平分量最大值增加了14.8%。有关铁磁材料的低温磁性能研究可以为超导电磁装置的铁芯磁路设计提供依据。
        The magnetic properties and loss characteristics of ferromagnetic materials in 300 and 77 K environments were investigated by a simulated impact method. The ferromagnetic materials DT4, 1 J22, 2 Cr13 and amorphous FeSiB alloy were used as the research samples.The results show that in nitrogen environment, the saturation magnetic induction intension of DT4, 1 J22, 2 Crl3 and amorphous FeSiBare slightly increased, and the saturation magnetic induction intension of FeSiB increases by 5.3%. The coercive forces of DT4, amorphous FeSiB and 2 Crl3 increase greatly, of which the coercive force of DT4 increases by 106%, while the coercive force of 1 J22 decreases by1.7%. When the frequency is 50 Hz, the loss of DT4 in liquid nitrogen environment increases sharply compared with at normal temperature, while the loss of amorphous FeSiB and 2 Cr13 increases slightly compared with at normal temperature, and the loss of 1 J22 varies little. Finally, the magnetic field calculation of the magnetron sputtering cathode excited by superconducting coil is taken as an example. Under the same structure of iron core, the maximum value of the horizontal component of magnetic field is 0.2344 T when using1 J22 as the core of the magnetron sputtering cathode. Compared with that using 2 Crl3 as the iron core, the maximum value of the horizontal component of magnetic field increases by 14.8%. The study on the low temperature magnetic properties of ferromagnetic materials can provide a reference for the design of magnetic circuit of superconducting electromagnetic equipment.
引文
[1] Xiao Liye(肖立业). Chinese Science Bulletin(科学通报)[J],2015, 60(25):2367
    [2] Xiao Liye(肖立业),Gu Hongwei(古宏伟),Wang Qiuliang(王秋良)et al. Physics(物理)[J],2017, 46(8):536
    [3] Bai Lifeng(白利峰),Zhang Pingxiang(张平祥). Chinese Journal of Low Temperature Physics(低温物理学报)[J],2016,38(5):1
    [4]Jin Tao(金涛),Xu Ying(徐颖),Zhou Shiping(周世平)et al.Cryogenics&Superconductivity(低温与超导)[J], 2013, 41(1):13
    [5] Liu Q, Zhang G M, Yu H et al. Journal of Superconductivity and Novel Magnetism[J], 2016, 30(3):1
    [6] Choi K D, Lee H J, Cha G et al. IEEE Transactions on Applied Superconductivity[J], 2000,10(1):853
    [7] Zhou Ruoan(周若安),Ma Yilong(马毅龙),Chen Dengming(陈登明)et al. Journal of Functional Materials(功能材料)[J],2014, 45(16):16 030
    [8] Zhang Wenfeng(张文峰). Researchs on the Electro-magnetic Field Problems of High Temperature Superconducting Wind Generators Considering the Structure of Damping and Screening System(考虑阻尼屏蔽系统时超导风力发电机相关电磁问题的研究)[D]. Beijing:University of Chinese Academy of Sciences, 2017
    [9] Chen Min(陈敏),Qiu Ming(丘明),Xiao Liye(肖立业)etal.Advanced Technology of Electrical Engineering and Energy(电工电能新技术)[J],2003, 22(1):35
    [10] Jankowski B, Kapelski D, Karbowiak M et al. Powder Metallurgy[J], 2003, 57(2):155
    [11] Suzuki Y, Horikoshi E, Niwa K. Magnetic Properties and Ferromagnetic Shielding of Ni-Fe-Mo Alloys at Cryogenic Temperatures[M]. New York:Springer, 1984:469
    [12] Oxley P, Goodell J, Molt R. Journal of Magnetism&Magnetic Materials[J], 2009, 321(14):2107
    [13] Llamazares J L S, Quintananedelcos A, Rlosjara D et al.Journal of Magnetism&Magnetic Materials[J], 2016, 401:38
    [14] Hua Ying(华瑛). Physics Examination and Testing(物理测试)[J],2009, 27(5):28
    [15] Zhang Jianke(张建可). Cryogenics&Superconductivity(低温与超导)[J],1990(4):33
    [16] Shen Baogen(沈保根),Zhan Wenshan(詹文山),Zhao Jiangao(赵见高)et al. Acta Physica Sinica(物理学报)[J],1985, 34(8):1009
    [17] Ishibashi S, Higuchi Y,Ota Y et al. Journal of Vacuum Science&Technology A[J],1990, 8(3):1403
    [18] Mizutani U, Hazama H, Matsuda T et al. Superconductor Science&Technology[J], 2005, 18(2):S30
    [19] Mizutani U, Hazama H, Matsuda T et al. Superconductor Science&Technology[J], 2003, 16(10):1207
    [20] Yamaguchi T, Ikuta H, Yanagi Y et al. Physica C Superconductivity&Its Applications[J], 2007, 463(1):1342
    [21] Ikuta H, Yokouchi K, Ohta I et al. Vacuum[J], 2008, 83(3):475
    [22] Hazama H, Matsuda T, Mizutani U et al. Japanese Journal of Applied Physics[J],2004, 43(9A):6026
    [23] Qiu Q Q, Qu F, Wang T L et al. Physica C Superconductivity[J], 2017, 542(15):40
    [24] Rostila L, Lehtonen J, Seiler E et al. Superconductor Science Technology[J],2007, 20(12):1097
    [25] Sun Q, Zhang Z, Lin L et al. IEEE Transactions on Applied Superconductivity[J], 2014, 24(3):1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700