溶胶组成对氧化铝纤维微观结构及性质的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impacts of Sol Composition on Microstructure and Properties of Alumina Fibers
  • 作者:赵晓敏 ; 陈代荣 ; 焦秀玲 ; 张平平
  • 英文作者:ZHAO Xiao-min;CHEN Dai-rong;JIAO Xiu-ling;ZHANG Ping-ping;State Key Laboratory of Microbial Technology;Microbial Technology Institute;School of Chemistry and Chemical Engineering, Shandong University;Institute of Materia Medica Shandong Academy of Medical Sciences;
  • 关键词:氧化铝 ; 静电纺丝 ; 溶胶凝胶 ; 柔性纤维
  • 英文关键词:alumina;;electrospinning;;sol-gel;;flexible fibers
  • 中文刊名:GZHA
  • 英文刊名:Guangzhou Chemical Industry
  • 机构:微生物技术国家重点实验室;山东大学微生物技术研究院;山东大学化学与化工学院;山东省医学科学院药物研究所;
  • 出版日期:2019-05-08
  • 出版单位:广州化工
  • 年:2019
  • 期:v.47
  • 语种:中文;
  • 页:GZHA201909031
  • 页数:8
  • CN:09
  • ISSN:44-1228/TQ
  • 分类号:84-91
摘要
以氯化铝和铝粉为铝源,水为溶剂,乙醇为辅助溶剂,采用溶胶-凝胶结合静电纺丝方法,制备了柔性γ和α氧化铝纤维,研究了溶胶中铝单体和Al_(13)组成情况对氧化铝纤维微观结构、物相转变和隔热性能的影响。溶胶中Al_(13)含量较多能推迟纤维的物相转变,使γ-Al_2O_3纤维的气孔和组成颗粒增大,降低γ-Al_2O_3纤维的比表面积,降低γ-Al_2O_3和α-Al_2O_3纤维的导热系数。S4组γ-Al_2O_3和α-Al_2O_3纤维的导热系数仅为0.08087和0.1251 W/m·k。研究表明,溶胶中较高的Al_(13)含量有利于提高纤维材料的隔热性能。
        Using aluminum chloride and aluminum as raw materials, pure water as solvent, ethanol as aid solvent, alumina sols containing different proportions of alumina monomer and Al_(13) were prepared. Gel fibers were prepared by electrospinning, and flexible flocculence γ-Al_2O_3 and α-Al_2O_3 fibers were fabricated. The impacts of sol composition on the microstructure of fibers, phase transformation and insulation performance were investigated. Al_(13) can delay the phase transformation of the fibers, more content of Al_(13) in sol can enlarge the size of pore and grain of γ-Al_2O_3 fibers, and reduce specific surface area as well as the thermal conductivity of alumina fibers. The thermal conductivity of γ and α alumina fibers prepared by S4 was only 0.08087 and 0.1251 W/m·k, indicating that high content of Al_(13) was good for improving the thermal insulation properties of the fibers.
引文
[1] Zhang P P,Jiao X L,Chen D R,et al.Fabrication of electrospun Al2O3 fibers with CaO-SiO2 additive[J].Mater.Lett.,2013,91:23-26.
    [2] Su V,Terehov M,Clyne B.Filtration performance of membranes produced using nanoscale alumina fibers (NAF) [J].Adv.Eng.Mater.,2012,14(12):1088-1096.
    [3] Kang W M,Cheng B W,Li Q X,et al.A new method for preparing alumina nanofibers by electrospinning technology[J].Text.Res.J.,2011,81(2):148-155.
    [4] Zhang P P,Chen D R,Jiao X L.Fabrication of flexible α-alumina fibers composed of nanosheets[J].Eur.J.Inorg.Chem.,2012(26):4167-4173.
    [5] Azad A M.Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning[J].Mater.Sci.Eng.A,2006,435-436:468-473.
    [6] Zhang S,Cao X Y,Ma Y M.Fabrication of alumina ribbons with mixed solvent system in electrospinning[J].J.Optoelectron.Adv.Mater.,2011,13:425-427.
    [7] Mahapatra A,Mishra B G,Hota G.Studies on electrospun alumina nanofibers for the removal of chromium(VI) and fluoride toxic ions from an aqueous system[J].Ind.Eng.Chem.Res.,2012,52(4):1554-1561.
    [8] Yu H,Guo J,Zhu S Q,et al.Preparation of continuous alumina nanofibers via electrospinning of PAN/DMF solution[J].Mater.Lett.,2012,74:247-249.
    [9] Tan E P S,Lim C T.Physical properties of a single polymeric nanofiber[J].Appl.Phys.Lett.,2004,84:1603-1605.
    [10] Li D,Xia Y N.Electrospinning of nanofibers:reinventing the wheel[J].Adv.Mater.,2004,16 (14):1151-1170.
    [11] Bag S,Trikalitis P N,Chupas P J,et al.Porous semiconducting gels and aerogels from chalcogenide clusters[J].Science,2007,317(5837):490-493.
    [12] Mohanan J L,Arachchige I U,Brock S L.Porous semiconductor chalcogenide aerogels[J].Science,2005,307(5708):397-400.
    [13] Maneeratana V,Sigmund W M.Continuous hollow alumina gel fibers by direct electrospinning of an alkoxide-based precursor[J].Chem.Eng.J.,2008,137:137-143.
    [14] Azad A M.Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning[J].Mater.Sci.Eng.,A,2006,435-436:468-473.
    [15] Panda P K,Ramakrishna S.Electrospinning of alumina nanofibers using different precursors[J].J.Mater.Sci.,2007,42:2189-2193.
    [16] Akitt J W,Farthing A.Aluminium-27 nuclear magnetic resonance studies of the hydrolysis of aluminium(III).Part 2.Gel-permeation chromatography[J].J.Chem.Soc.Dalton Trans.,1981(7):1606-1608.
    [17] Chen Z Y,Luan Z K,Fan J H,et al.Effect of thermal treatment on the formation and transformation of Keggin Al13 and Al30 species in hydrolytic polymeric aluminum solutions[J].Colloid Surf.A-Physicochem.Eng.Asp.,2007,292:110-118.
    [18] Wang W,Wentz K M,Hayes S E,et al.Synthesis of the hydroxide cluster [Al13(μ3-OH)6(μ-OH)18(H2O)24]15+ from an aqueous solution[J].Inorg.Chem.,2011,50(11):4683-4685.
    [19] Qian Z S,Feng H,Yang W J,et al.Supermolecule density functional calculations on the water exchange of aquated Al(iii) species in aqueous solution[J].Chem.Commun.,2008(33):3930-3932.
    [20] Kang L S,Han S W,Jung C W.Synthesis and characterization of polymeric inorganic coagulants for water treatment[J].Korean J.Chem.Eng.,2001,18(6):965-970.
    [21] Chen Z Y,Luan Z K,Jia Z P,et al.Study on the hydrolysis/precipitation behavior of Keggin Al13 and Al30 polymers in polyaluminum solutions[J].J.Environ.Manage.,2009,90:2831-2840.
    [22] Qian Z S,Feng H,Yang W J,et al.Theoretical investigation of water exchange on the nanometer-sized polyoxocation AlO4Al12(OH)24(H2O)127+ (Keggin-Al13) in aqueous solution[J].J.Am.Chem.Soc.,2008,130(44):14402-14403.
    [23] 居学海,范晓薇,马海霞,等.水合铝离子单体和二聚体的DFT研究[J].环境化学,2007,26(3):347-351.
    [24] Parthasarathy N,Buffle J.Study of polymeric aluminium(iii) hydroxide solutions for application in waste water treatment.properties of the polymer and optimal conditions of preparation[J].Water Res.,1985,19:25-36.
    [25] Venkatesh R,Ramanan S R.Influence of processing variables on the microstructure of sol-gel spun alumina fibres[J].Mater.Lett.,2002,55:189-195.
    [26] 王趁义,罗明标,毕树平.环境中羟基聚合铝型体的形成和形态转化规律[J].分析科学学报,2003,19(4):383-388.
    [27] Annenkov V V,Filina E A,Danilovtseva E N,et al.Aluminum complexes with a donor polymer:new route to organic/inorganic polymer hybrids[J].J.Sol-Gel Sci.Technol.,2003,27(2):163-166.
    [28] Allouche L,Taulelle F.Conversion of Al13 Keggine ε into Al30:a reaction controlled by aluminum monomers[J].Inorg.Chem.Commun.,2003,6:1167-1170.
    [29] Casey W H.Large Aqueous aluminum hydroxide molecules[J].Chem.Rev.,2005,106(1):1-16.
    [30] Wang S L,Wang M K,Tzou Y M.Effect of temperatures on formation and transformation of hydrolytic aluminum in aqueous solutions[J].Colloid Surf.A Physicochem.Eng.Asp.,2003,231:143-157.
    [31] Yalcin D,Ozcalik O,Altiok E,et al.Characterization and recovery of tartaric acid from wastes of wine and grape juice industries[J].J.Therm.Anal.Calorim.,2008,94(3):767-771.
    [32] Nuansing W,Ninmuang S,Jarernboon W,et al.Structural characterization and morphology of electrospun TiO2 nanofibers[J].Mater.Sci.Eng.B,2006,131:147-155.
    [33] Mahapatra A,Mishra B G,Hota G.Synthesis of ultra-fine a-Al2O3 fibers via electrospinning method[J].Ceram.Int.,2011,37:2329-2333.
    [34] Chen X T,Gu L X.The sol-gel transition of mullite spinning solution in relation to the formation of ceramic fibers[J].J.Sol-Gel Sci.Tech.,2008,46(1):23-32.
    [35] Chandradass J,Balasubramanian M.Sol-gel processing of alumina fibres[J].J.Mater.Process.Tech.,2006,173:275-280.
    [36] Chiou Y H,Tsai M T,Shih H C.The preparation of alumina fibre by sol-gel processing[J].J.Mater.Sci.,1994,29 (9):2378-2388.
    [37] Yogo T,Iwahara H.Synthesis of α-alumina fibre from modified aluminium alkoxide precursor[J].J.Mater.Sci.,1992,27(6):1499-1504.
    [38] Sing K S W,Everett D H,Haul R A W,et al.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J].Pure.Appl.Chem.,1984,57(4):603-619.
    [39] 张娜,张玉军,田庭艳,等.高温低热导率隔热材料的研究现状及进展[J].中国陶瓷,2006,42(1):16-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700