铜铟硫纳米粒子对钙钛矿太阳能电池性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of CuInS_2 Nanoparticles on Properties of Perovskite Solar Cells
  • 作者:杨成武 ; 陈文志
  • 英文作者:YANG Chengwu;CHEN Wenzhi;College of Energy,Xiamen University;College of Physics and Information Engineering,Quanzhou Normal University;
  • 关键词:钙钛矿吸光层 ; 磁滞效应 ; CuInS_2纳米粒子
  • 英文关键词:perovskite;;hysteresis effect;;CuInS_2 nanoparticles
  • 中文刊名:CLKX
  • 英文刊名:Journal of Materials Science and Engineering
  • 机构:厦门大学能源学院;泉州师范学院物理与信息工程学院;
  • 出版日期:2019-02-20
  • 出版单位:材料科学与工程学报
  • 年:2019
  • 期:v.37;No.177
  • 基金:泉州市科技厅资助项目(2016G056);; 泉州师范学院资助项目(2016YYKJ20);泉州师范学院创新资助项目(201610399087);; 校人才队伍建设资助项目(G15068);; 福建省中青年教师教育科研资助项目(JAT170472)
  • 语种:中文;
  • 页:CLKX201901012
  • 页数:8
  • CN:01
  • ISSN:33-1307/T
  • 分类号:70-77
摘要
为克服钙钛矿太阳能电池滞后效应,本文通过热注射法制得CuInS_2纳米粒子,将其以0.01%(摩尔比例)掺入甲胺/甲脒(FAPbI_3)_x(MAPbCl_3)_(1-x)混合钙钛矿中制备吸光层,并组装正向平面异质结钙钛矿太阳能电池,掺杂CuInS_2器件的正向扫描光电转化效率达15.66%,反向扫描结果达15.36%,两者仅相差1.95%;而未经掺杂的器件正向扫描光电转化效率为15.14%,反向扫描结果为13.58%,两者相差11.49%。结果表明,在(FAPbI_3)_x(MAPbCl_3)_(1-x)混合钙钛矿吸光层中掺杂CuInS_2有利于相应器件磁滞效应等各项性能的提升。
        In order to overcome the hysteresis effect of perovskite solar cells,CuInS_2 nanoparticles by hot injection method were doped into (FAPbI_3)_x(MAPbCl_3)_(1-x) perovskite film with the molar ratio of 0.01%.The forward-scanning(FS) PCE of the perovskite device doped by CuInS_2 was up to 15.66% with the reverse-scanning(RS) result of 15.36%,and the difference of PCE between FS and RS was only 1.95%.However,the forward-scanning PCE of the undoped device was 15.14%,with the reverse-scanning result of13.58%,and the difference of PCE was 11.49%.The experimental results show that the addition of CuInS_2 in the(FAPbI_3)_x(MAPbCl_3)_(1-x) mixed perovskite absorber can improve the performance of the corresponding devices,including considerably reducing the hysteresis effect of the device.
引文
[1] Xiao J,Shi J,Li D,et al.Perovskite Thin-Film Solar Cell:Excitation in Photovoltaic Science[J].Science China Chemistry,2015,58(2):221~238.
    [2]袁怀亮,李俊鹏,王鸣魁.有机无机杂化固态太阳能电池的研究进展[J].物理学报,2015,64(3):038405.
    [3] Cui J,Yuan H,Li J,et al.Recent Progress in Efficient Hybrid Lead Halide Perovskite Solar Cells[J].Science and Technology of Advanced Materials,2015,16(3):036004.
    [4] Xu X,Li S,Zhang H,et al.A Power Pack Based on Organometallic Perovskite Solar Cell and Supercapacitor[J].Acs Nano,2015,9(2):1782~1787.
    [5] Wehrenfennig C,Eperon G E,Johnston M,et al.High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites[J].Advanced Materials,2014,26(10):1584~1589.
    [6] Kazim S,Nazeeruddin M K Grtzel M,Ahmad S.Perovskite As Light Harvester:a Game Changer in Photovoltaics[J].Angewandte Chemie International Edition,2014,53(11):2812~2824.
    [7] Lotsch B V.New Light on an Old Story:Perovskites Go Solar[J].Angewandte Chemie International Edition,2014,53(3):635~637.
    [8] Lee M M,Teuscher J,et al.Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites[J].Science,2012,338(6107):643~647.
    [9] Kojima A,Teshima K,Shirai Y,et al.Organometal Halide Perovskites As Visible-Light Sensitizers for Photovoltaic Cells[J].Journal of the American Chemical Society,2009,131(17):6050~6051.
    [10] Zhou H,Chen Q,Li G,et al.Interface Engineering of Highly Efficient Perovskite Solar Cells[J].Science,2014,345(6196):542~546.
    [11] Xu X,Wang M.Photocurrent Hysteresis Related to Ion Motion in Metal-Organic Perovskites[J].Science China Chemistry,2016,60(3):396~404.
    [12]蒋佳佳,曹方旭,等.湿度对钙钛矿太阳能电池性能及其稳定性的影响[J].材料科学与工程学报,2017,35(2):181~186.
    [13] Nagaoka H,Ma F,Dequilettes D W,et al.Zr Incorporation into TiO2Electrodes Reduces Hysteresis and Improves Performance in Hybrid Perovskite Solar Cells while Increasing Carrier Lifetimes[J].The Journal of Physical Chemistry Letters,2015,6(4):669~675.
    [14] Jeon N J,Noh J H,Kim Y C,et al.Solvent Engineering for High-Performance Inorganic-Organic Hybrid Perovskite Solar Cells[J].Nature Materials,2014,13(9):897~903.
    [15] Kim H-S,Park N-G.Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells:Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer[J].The Journal of Physical Chemistry Letters,2014,5(17):2927~2934.
    [16] Tress W,Marinova N,Moehl T,et al.Understanding The Rate-Dependent J-V Hysteresis,Slow Time Component,and Aging in CH3NH3PbI3 Perovskite Solar Cells:The Role of a Compensated Electric Field[J].Energy&Environmental Science,2015,8(3):995~1004.
    [17] Xiao Z,Yuan Y,Shao Y,et al.Giant Switchable Photovoltaic Effect in Organometal Trihalide Perovskite Devices[J].Nature Materials,2015,14(2):193~198.
    [18] O’Regan B C,Barnes P R,et al.Optoelectronic Studies of Methylammonium Lead Iodide Perovskite Solar Cells with Mesoporous TiO2:Separation of Electronic and Chemical Charge Storage,Understanding Two Recombination Lifetimes,and the Evolution of Band Offsets during J-V Hysteresis[J].Journal of the American Chemical Society,2015,137(15):5087~5099.
    [19] Shao Y,Xiao Z,Bi C,et al.Origin and Elimination of PhotocurrentHysteresisbyFullerenePassivationin CH3NH3PbI3 Planar Heterojunction Solar Cells[J].Nature Communications,2014,5:5784.
    [20] Juarez-Perez E J,Sanchez R S,Badia L,et al.Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells[J].The Journal of Physical Chemistry Letters,2014,5(13):2390~2394.
    [21] Gottesman R, Haltzi E,Gouda L,et al.Extremely Slow PhotoconductivityResponseofCH3NH3PbI3 Perovskites Suggesting Structural Changes under Working Conditions[J].The Journal of Physical Chemistry Letters,2014,5(15):2662~2669.
    [22] Chen H-W, Sakai N,Ikegami M,et al.Emergence of Hysteresis and Transient Ferroelectric Response in Organolead Halide Perovskite Solar Cells[J].The Journal of Physical Chemistry Letters,2014,6(1):164~169.
    [23] Meloni S,Moehl T,Tress W,et al.Ionic Polarization-Induced Current-Voltage Hysteresis in CH3NH3PbX3 Perovskite Solar Cells[J].Nature Communications,2016,7:10334.
    [24] Zhang H,Qiao X,Shen Y,et al.Photovoltaic Behaviour of Lead Methylammonium Triiodide Perovskite Solar Cells down to80K[J].Journal of Materials Chemistry A,2015,3(22):11762~11767.
    [25] Eames C,Frost J M,Barnes P R,et al.Ionic Transport in Hybrid Lead Iodide Perovskite Solar Cells[J]. Nature Communications,2015,6:7497.
    [26] Azpiroz J M,Mosconi E,Bisquert J,et al.Defect Migration in Methylammonium Lead Iodide and Its Role in Perovskite Solar Cell Operation[J].Energy&Environmental Science,2015,8(7):2118~2127.
    [27] Yang T Y,Gregori G,Pellet N,et al.The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer[J].Angewandte Chemie,2015,127(27):8016~8021.
    [28] Unger E,Hoke E,Bailie C,et al.Hysteresis and Transient Behavior in Current-Voltage Measurements of HybridPerovskite Absorber Solar Cells[J].Energy&Environmental Science,2014,7(11):3690~3698.
    [29] Guo Q, Ford G M, Yang W-C,et al.Enhancing the Performance of CZTSSe Solar Cells with Ge Alloying[J].Solar Energy Materials and Solar Cells,2012,105:132~136.
    [30] Ghorpade U,Suryawanshi M,Shin S W,et al.Towards Environmentally Benign Approaches for the Synthesis of CZTSSe Nanocrystals by a Hot Injection Method:A Status Review[J].Chemical Communications,2014,50(77):11258~11273.
    [31] Jackson P,Hariskos D,Lotter E,et al.New World Record Efficiency for Cu(In,Ga)Se2Thin-Film Solar Cells beyond 20%[J].Progress in Photovoltaics:Research and Applications,2011,19(7):894~897.
    [32] Lin Y-C, Ke J-H, Yen W-T,et al. Preparation and Characterization of Cu(In,Ga)(Se,S)2 Films without Selenization by Co-Sputtering from Cu(In,Ga)Se2 Quaternary and In2S3Targets[J].Applied Surface Science,2011,257(9):4278~4284.
    [33] Ihlal A,Bouabid K,Soubane D,et al.Comparative Study of Sputtered and Electrodeposited CI(S,Se)and CIGSe Thin Films[J].Thin Solid Films,2007,515(15):5852~5856.
    [34] Kuo D-H,Hsu J-P.Property Characterizations of Cu2ZnSnSe4and Cu2ZnSn(S,Se)4Films Prepared by Sputtering with Single Cu-Zn-Sn Target and a Subsequent Selenization or Sulfoselenization Procedure[J].Surface and Coatings Technology,2013,236:166~171.
    [35] Zhang S,Wu L,et al.Effects of Sb-Doping on the Grain Growth of Cu(In,Ga)Se2 Thin Films Fabricated by Means of Single-target Sputtering[J].Thin Solid Films,2013,527:137~140.
    [36] Alberts V.Band Gap Engineering in Polycrystalline Cu(In,Ga)(Se,S)2Chalcopyrite Thin Films[J].Materials Science and Engineering:B,2004,107(2):139~147.
    [37] Kim S,Oh M,Kim W K.Effect of Sn-layer Addition to Precursors on Characteristics of Cu2ZnSn(S,Se)4 Thin-Film Solar Cell Absorber[J].Thin Solid Films,2013,549:59~64.
    [38] Caballero R,Izquierdo-Roca V,Merino J,et al.Cu2ZnSnS4Thin Films Grown by Flash Evaporation and Subsequent Annealing in Ar Atmosphere[J].Thin Solid Films,2013,535:62~66.
    [39] Jung S,Gwak J,Yun J H,et al.Cu2ZnSnSe4 Thin Film Solar Cells Based on a Single-Step Co-Evaporation Process[J].Thin Solid Films,2013,535:52~56.
    [40] Liu X,Wang X,Zhou B,et al.Size-Controlled Synthesis of Cu2-xE(E=S,Se)Nanocrystals with Strong Tunable NearInfrared Localized Surface Plasmon Resonance and High Conductivity in Thin Films[J].Advanced Functional Materials,2013,23(10):1256~1264.
    [41] Tsai H,Nie W,Blancon J C,et al.High-Efficiency Twodimensional Ruddlesden-popper Perovskite Solar Cells[J].Nature,2016,536:312~316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700