四旋翼无人机自主飞行系统优化设计与实现
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimal Design and Implementation of Autonomous Flight System for Quadrotor UAV
  • 作者:陈钊 ; 年晓红 ; 熊红云 ; 周文孝
  • 英文作者:CHEN Zhao;NIAN Xiaohong;XIONG Hongyun;ZHOU Wenxiao;School of Information Science and Engineering, Central South University;
  • 关键词:四旋翼无人机 ; 硬件实现 ; 参数辨识 ; 测量精度 ; 抗扰性能
  • 英文关键词:quadrotor UAV;;hardware implementation;;parameter identification;;measurement accuracy;;disturbance resistance
  • 中文刊名:BLJS
  • 英文刊名:Control and Information Technology
  • 机构:中南大学信息科学与工程学院;
  • 出版日期:2019-02-05
  • 出版单位:控制与信息技术
  • 年:2019
  • 期:No.457
  • 基金:国家自然科学基金项目(61473314)
  • 语种:中文;
  • 页:BLJS201901008
  • 页数:7
  • CN:01
  • ISSN:43-1546/TM
  • 分类号:38-44
摘要
文章从无人机硬件实现角度出发,介绍了无人机自主飞行系统构成,并分析了参数辨识及试验飞行过程的常见问题;针对实验过程中无人机定位精度、高度测量精度、视觉传感器测量信息及抗扰性能等问题,分析了单个传感器测量对无人机飞行性能的影响,并利用多传感器信息融合提高了系统测量精度;设计了自主飞行控制算法,提高系统对外部扰动的抑制能力,并通过实验验证了其有效性。
        From the UAV(unmanned aerial vehicle) hardware realization point of view, this paper introduced the composition of an UAV autonomous flight system, and analyzed common problems of parameter identification and test flight process. To ensure the UAV positioning accuracy, height measurement accuracy, visual sensor measurement information and anti-disturbance performance during the experiment, the influence of single sensor measurement on UAV flight performance was analyzed. The measurement accuracy of the system is improved by multi-sensor information fusion, and the autonomous flight control algorithm was designed to improve the system's ability to suppress external disturbance. The validity of the design was verified by experiments.
引文
[1]GUVENC I,KOOHIFAR F,SINGH S,et al.Detection,Tracking,and Interdiction for Amateur Drones[J].IEEE Communications Magazine,2018,56(4):75-81.
    [2]HERNáNDEZ-VEGA J I,VARELA E R,ROMERO N H,et al.Internet of Things(IoT)for Monitoring Air Pollutants with an Unmanned Aerial Vehicle(UAV)in a Smart City[J/OL].Technological Forecasting&Social Change2018[2018-10-01].https://doi.org/10.1016/j.techfore.2018.05.004:1-15.
    [3]唐露新,于丽敏,张宇维.民用无人机系统的研究与应用[J].机床与液压,2018,46(5):127-133.
    [4]RECCHIUTO C T,SGORBISSA A.Post-disaster assessment with unmanned aerial vehicles:A survey on practical implementations and research approaches[J].Journal of Field Robotics,2017,35(3):1-32.
    [5]ZHENG D,WANG H,CHEN W,et al.Planning and Tracking in Image Space for Image-Based Visual Servoing of a Quadrotor[J].IEEE Transactions on Industrial Electronics,2018,65(4):3376-3385.
    [6]XU Z W,NIAN X H,WANG H B,et al.Robust guaranteed cost tracking control of quadrotor UAV with uncertainties[J].Isa Transactions,2017,69:157-165.
    [7]LIM H,PARK J,LEE D,et al.Build Your Own Quadrotor:OpenSource Projects on Unmanned Aerial Vehicles[J].IEEE Robotics&Automation Magazine,2012,19(3):33-45.
    [8]潘春荣,许化.基于STM32的X型四旋翼无人机设计[J].工程设计学报,2017,24(2):196-202.
    [9]LIN Y,SARIPALLI S.Sampling-Based Path Planning for UAV Collision Avoidance[J].IEEE Transactions on Intelligent Transportation Systems,2017(99):1-14.
    [10]OMARI S,HUA M D,DUCARD G,et al.Hardware and Software Architecture for Nonlinear Control of Multirotor Helicopters[J].IEEE/ASME Transactions on Mechatronics,2013,18(6):1724-1736.
    [11]JARDIN M,MUELLER E.Optimized Measurements of UAV Mass Moment of Inertia with a Bifilar Pendulum[J].Journal of Aircraft,2013,46(3):763-775.
    [12]CHOI Y C,AHN H S.Nonlinear Control of Quadrotor for Point Tracking:Actual Implementation and Experimental Tests[J].IEEE/ASME Transactions on Mechatronics,2015,20(3):1179-1192.
    [13]王艺希,秘金钟,徐彦田,等.BDS/GPS/GLONASS RTK定位算法研究[J].测绘通报,2018(3):9-13.
    [14]KUBO N,TOKURA H,PULLEN S.Mixed GPS-BeiDou RTK with inter-systems bias estimation aided by CSAC[J].GPS Solutions,2018,22(1):1-12.
    [15]王辰,郑顺义,朱锋博,等.一种基于多目视觉的无人机实时定位方法[J].测绘通报,2018(4):32-35,82.
    [16]吕强,倪佩佩,王国胜,等.基于光流传感器的四旋翼飞行器悬停校正[J].装甲兵工程学院学报,2014(3):68-72.
    [17]吴瀚文.四旋翼飞行器抗风控制研究[D].哈尔滨:哈尔滨工业大学,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700