锂离子电池熵热系数间接计算方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Indirect calculation method of entropy heat coefficient of lithium-ion battery
  • 作者:文华 ; 黄伟 ; 赖俊全
  • 英文作者:WEN Hua;HUANG Wei;LAI Junquan;School of Mechatronics Engineering,Nanchang University;
  • 关键词:锂离子电池 ; 放电过程 ; 熵热系数 ; 计算方法
  • 英文关键词:lithium-ion battery;;during discharge;;entropy heat coefficient;;calculation method
  • 中文刊名:NCDG
  • 英文刊名:Journal of Nanchang University(Engineering & Technology)
  • 机构:南昌大学机电工程学院;
  • 出版日期:2019-03-28
  • 出版单位:南昌大学学报(工科版)
  • 年:2019
  • 期:v.41;No.159
  • 基金:国家自然科学基金资助项目(51762034)
  • 语种:中文;
  • 页:NCDG201901013
  • 页数:6
  • CN:01
  • ISSN:36-1194/T
  • 分类号:74-79
摘要
为了解决直接测量熵热系数存在实验周期长,以及轻微自放电对测试结果准确性的影响,提出了一种间接测量熵热系数的方法。通过实验测得不同温度下电池的内阻,计算得到1 C放电倍率下的内阻生热率。分别在绝热和室温条件下测得电池1 C放电倍率下的温升,计算得到总生热率,结合1 C放电倍率下的内阻生热率,基于Bernardi生热速率模型公式,间接计算得到电池的熵热系数。结果表明:在2种条件下得到的熵热系数曲线变化趋势基本一致。可见,可以采用此种方法来计算电池的熵热系数。
        In order to solve the problem of direct measurement of the entropy heat coefficient of lithium-ion batteries,there were long test cycles and slight self-discharge,and the effect of slight self-discharge on the accuracy of test results,an indirect method for measuring the entropy-heat coefficient of lithium-ion batteries was proposed.The internal resistance of the battery at different temperatures was measured experimentally,and the internal resistance heat rate at 1 C discharge rate was calculated.The temperature rise under the 1 C discharge ratio of the battery was measured at the condition of adiabatic and room temperature.The total heat rate was calculated and the internal resistance heat generation rate under the 1 C discharge ratio was calculated.The entropy thermal coefficient of the battery was calculated indirectly based on the formula of the Bernardi heat generation rate model. The results showed that the curves of entropy heat coefficient were in good agreement under the two conditions.It can be seen that this method can be used to calculate the entropy heat coefficient of the battery.
引文
[1]亢凤林,李军民.电动汽车发展分析[J].农业装备与车辆工程,2008(11):63-65.
    [2] NOBORU S.Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles[J].Journal of power sources,2010,99(1):70-77.
    [3] SRINIVASAN V,WANG C Y.Analysis of electrochemical and thermal behavior of li-ion cells[J]. Journal of the electrochemical society,2003,150(1):A98-A106.
    [4] YOSGUYASU S.Thermal studies of a lithium-ion battery[J].Journal of power sources,1997,68(2):451-454.
    [5]李斌,常国峰,林春景,等.车用动力锂电池产热机理研究现状[J].电源技术,2014,38(2):378-381.
    [6]翟文波,史晓妍,朱蕾.锂离子电池开路电压温度系数的测试与分析[J].电源技术,2013,37(11):1954-1955.
    [7]李慧芳,李飞.锂离子电池的可逆及不可逆产热测试[J].电源技术,2016,40(11):2128-2131.
    [8]云凤玲,卢世刚.基于高镍三元材料锂离子动力电池在循环前后的热特性分析[J].稀有金属,2014,38(6):283-292.
    [9] BERNARDI D,PAWLIKOWSKI E,Newman J.A general energy balance for battery systems[J].Journal of the electrochemical society,1985,132(1):5-12.
    [10] CHEN S C,WAN C C,WANG Y Y.Thermal analysis of lithium-ion batteries[J]. Journal of power sources,2005,140(1):111-124.
    [11] ONDA K,OHSHIMA T,NAKAYAMA M,et al. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles[J].Journal of power sources,2006,158(1):535-542.
    [12] KIM U S,SHIN C B,KIM C S.Modeling for the scale-up of a lithium-ion polymer battery[J]. Journal of power sources,2009,189(1):841-846.
    [13] FORGEZ C,DO D V,FRIEDRICH G,et al.Thermal modeling of a cylindrical Li Fe PO4·g-1raphite lithium-ion battery[J].Journal of power sources,2010,195(9):2961-2968.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700