中国阿牙克库木湖水量变化及其驱动机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The changes in the water volume of Ayakekumu Lake based on satellite remote sensing data
  • 作者:陈军 ; 汪永丰 ; 郑佳佳 ; 曹立国
  • 英文作者:CHEN Jun;WANG Yong-feng;ZHENG Jia-jia;CAO Li-guo;School of Environment and Energy Engineering,Anhui University of Architecture;School of Geographic and Oceanographic Sciences,Nanjing University;School of Geography and Tourism,Shaanxi Normal University;
  • 关键词:阿牙克库木湖 ; 雷达测高 ; 湖泊范围 ; 水位 ; 气候变化
  • 英文关键词:Ayakekumu Lake;;radar altimetry;;lake extent;;water level;;climate change
  • 中文刊名:ZRZX
  • 英文刊名:Journal of Natural Resources
  • 机构:安徽建筑大学环境与能源工程学院;南京大学地理与海洋科学学院;陕西师范大学地理科学与旅游学院;
  • 出版日期:2019-06-28
  • 出版单位:自然资源学报
  • 年:2019
  • 期:v.34
  • 基金:安徽省教育厅高校自然科学研究项目(KJ2018JD08);; 国家自然科学基金项目(41371391)
  • 语种:中文;
  • 页:ZRZX201906018
  • 页数:12
  • CN:06
  • ISSN:11-1912/N
  • 分类号:213-224
摘要
融合卫星雷达测高(T/P、RA-2和Hydroweb)与光学遥感数据分析了一个长时间序列的阿牙克库木湖水位及面积变化趋势,并基于NDSI和监督分类的方法提取了湖泊补给冰川的面积。结果表明:阿牙克库木湖在监测期内逐年扩大,面积由1995年的624 km~2逐年扩张到2015年的995 km~2,在此期间水位总共上升了5 m。气温升高导致补给冰川持续消融,冰川面积由1994年的361.27 km~2退缩到2016年的345.26 km~2。区域气候的暖湿化是1995-2015年阿牙克库木湖水量增加的主要背景,流域降水量的增加对湖泊水位上升产生直接驱动,持续升高的气温导致的补给冰川消融对湖泊扩张具有重要的促进作用。此外,最大可能蒸散、高海拔降水(雪)、冻土融化等因素也对湖泊的扩张产生重要影响。总之,准确掌握阿牙克库木湖的水量及其对气候变化的响应,对深刻理解青藏高原北部边缘的水资源平衡研究具有重要意义。
        A long time series of the Ayakekumu Lake level change has been compiled by combination of the T/P, RA-2 and Hydroweb data. In addition, we assessed changing index of the Ayakekumu Lake during 1995-2015 based on Landsat images. The results showed that, the Ayakekumu Lake area and level increased continuously during the observation period, the area of lake increased from 624 km~2 in 1995 to 995 km~2 in 2015, and water level increased by 5 m in total in the period of 1995-2015. Meanwhile, the air temperature had risen, and the area of glaciers retreated from 361.27 km~2 in 1994 to 345.26 km~2 in 2016. We concluded that the water volume change was related with climate factors, and the main factor was warm-wet climate.Additionally, atmosphere warning led to water level increase due to glaciers melting. The water volume changing in Ayakekumu Lake could be affected by the increasing precipitation as well as dropping evaporation. Some factors are likely to affect lake expansion, including permafrost melting and precipitation at high altitudes. In sum, accurate measurements of lake ice and water levels are critical for understanding the water resource balance and hydrologic cycle in arid or semi-arid regions of China.
引文
[1]冯松,汤懋苍,王冬梅.青藏高原是我国气候变化启动区的新证据.科学通报, 1998, 43(6):633-636.[FENG S, TANG M C, WANG D M. New evidence for the Qinghai-Xizang(Tibet)Plateau as a pilot region of climatic fluctuation in China. Chinese Science Bulletin, 1998, 43(6):633-636.]
    [2] SALAMA M S, VELDE R V D, ZHONG L, et al. Decadal variations of land surface temperature anomalies observed over the Tibetan Plateau by the Special Sensor Microwave Imager(SSM/I)from 1987 to 2008. Climatic Change, 2012,114(3-4):769-781.
    [3] PARRY M L, CANZIANI O F, PALUTIKOF J P, et al. Climate Change 2007:Impacts, Adaptation and Vulnerability:Working Group II Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press, 2007.
    [4] GAO Y H, LI X, LEUNG L R, et al. Aridity changes in the Tibetan Plateau in a warming climate. Environmental Research Letters, 2015, 10(3):34013-34024.
    [5] DONG S Y, PENG F, YOU Q G, et al. Lake dynamics and its relationship to climate change on the Tibetan Plateau over the last four decades. Regional Environmental Change, 2017, 18(2):477-487.
    [6]姜永见,李世杰,沈德福,等.青藏高原近40年来气候变化特征及湖泊环境响应.地理科学, 2012, 32(12):1503-1512.[JIANG Y J, LI S J, SHEN D F. Climate change and its impact on the lake environment in the Tibetan Plateau in1971-2008. Scientia Geographica Sinica, 2012, 32(12):1503-1512.]
    [7]张振克,王苏民,吴瑞金,等.中国湖泊水资源问题与优化调控战略.自然资源学报, 2001, 16(1):16-21.[ZHANG Z K, WANG S M, WU R J. et al. Problems and optimum control strategy of lake water resources in China. Journal of Natural Resources, 2001, 16(1):16-21.]
    [8]施雅风.山地冰川与湖泊萎缩所指示的亚洲中部气候干暖化趋势与未来展望.地理学报, 1990, 44(1):1-13.[SHI Y F. Glacier recession and lake shrinkage indicating the climatic warming and drying trend in central Asia. Acta Geographica Sinica, 1990, 44(1):1-13.]
    [9]乔程,骆剑承,盛永伟,等.青藏高原湖泊古今变化的遥感分析:以达则错为例.湖泊科学, 2010, 22(1):98-102.[QIAO C, LUO J C, SHENG Y W, et al. Analysis on lake change since ancient and modern ages using remote sensing in Dagze Co, Tibetan Plateau. Journal of Lake Sciences, 2010, 22(1):98-102.]
    [10] ZHANG G Q, XIE H J, KANG S, et al. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data(2003-2009). Remote Sensing of Environment, 2011, 115(7):1733-1742.
    [11]李治国.近50年气候变化背景下青藏高原冰川和湖泊变化.自然资源学报, 2012, 27(8):1431-1443.[LI Z G. Glaciers and lakes changes on the Qinghai-Tibet Plateau under climate change in the past 50 years. Journal of Natural Resources, 2012, 27(8):1431-1443.]
    [12] WANG X, GONG P, ZHAO Y, et al. Water-level changes in China's large lakes determined from ICESat/GLAS data. Remote Sensing of Environment, 2013, 132(1):131-144.
    [13]董斯扬,薛娴,尤全刚,等.近40年青藏高原湖泊面积变化遥感分析.湖泊科学, 2014, 26(4):535-544.[DONG S Y,XUE X, YOU Q G, et al. Remote sensing monitoring of the lake area changes in the Qinghai-Tibet Plateau in recent 40years. Journal of Lake Sciences, 2014, 26(4):535-544.]
    [14]闫立娟,齐文.青藏高原湖泊遥感信息提取及湖面动态变化趋势研究.地球学报, 2012, 33(1):65-74.[YAN L J, QI W. Lakes in Tibetan Plateau extraction from remote sensing and their dynamic changes. Acta Geoscientia Sinica, 2012,33(1):65-74.]
    [15]张国庆,谢红接,姚檀栋,等.基于ICESat和Landsat的中国十大湖泊水量平衡估算.科学通报, 2013, 58(26):2664-2678.[ZHANG G Q, XIE H J, YAO T D. et al. Water balance estimates of ten greatest lakes in China using ICEsat and Landsat data. Chinese Science Bulletin, 2013, 58(26):2664-2678.]
    [16]施雅风,张祥松.气候变化对西北干旱区地表水资源的影响和未来趋势.中国科学:B辑, 1995, 25(9):968-977.[SHI Y F, ZHANG X S. Impacts and future prospective of climate change to terrestrial water resource in arid regions of Northwest China. Science China:Series B, 1995, 25(9):968-977.]
    [17]李林,吴素霞,朱西德,等. 21世纪以来黄河源区高原湖泊群对气候变化的响应.自然资源学报, 2008, 23(2):245-253.[LI L, WU S X, ZHU X D, et al. Response of the plateau lakes to changes of climate and frozen earth environment in the headwaters of the Yellow River since the 21st century. Journal of Natural Resources, 2008, 23(2):245-253.]
    [18] CAI Y, KE C Q, DUAN Z. Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data. Science of the Total Environment, 2017, 607-608:120-131.
    [19]朱立平,谢曼平,吴艳红.西藏纳木错1971-2004年湖泊面积变化及其原因的定量分析.科学通报, 2010, 55(18):1789-1798.[ZHU L P, XIE M P, WU Y H. Quantitative analysis of lake area variations and the influence factors from1971 to 2004 in the Nam Co basin of the Tibetan Plateau. Chinese Science Bulletin, 2010, 55(18):1789-1798.]
    [20]李华朋,张树清,孙妍.合成孔径雷达在湿地资源研究中的应用.自然资源学报, 2010, 25(1):148-154.[LI H P,ZHANG S Q, SUN Y. The applications of SAR to wetlands resource research. Journal of Natural Resources, 2010, 25(1):148-154.]
    [21]陈军,柯长青,汪永丰.南极拉森北部冰架表面物质损失机制探讨.中国环境科学, 2018, 38(3):1117-1125.[CHEN J, KE C Q, WANG Y F. Study on the surface mass loss mechanism of the northern Larsen ice shelf. China Environmental Science, 2018, 38(3):1117-1125.]
    [22] SILVA J S D, CALMANT S, SEYLER F, et al. Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions. Remote Sensing of Environment, 2010, 114(10):2160-2181.
    [23] YUJI M, YUSUKE I, KIYOSHI T, et al. Development of highly accurate global polygonal drainage basin data. Hydrological Processes, 2009, 23(4):572-584.
    [24]张鑫,吴艳红,张鑫. 1972-2012年青藏高原中南部内陆湖泊的水位变化.地理学报, 2014, 69(7):993-1001.[ZHANG X, WU Y H, ZHANG X. Water level variation of inland lakes on the south-central Tibetan Plateau in 1972-2012. Acta Geographica Sinica, 2014, 69(7):993-1001.]
    [25] TUCKER C J, DYKSTRA J D, GRANT D M. NASA's global orthorectified landsat data set. Photogrammetric Engineering&Remote Sensing, 2004, 70:313-322.
    [26] CHANDER G, MARKHAM B L, HELDER D L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 2009, 113(5):893-903.
    [27] HE T, LIANG S, WANG D, et al. Evaluating land surface albedo estimation from Landsat MSS, TM, ETM+, and OLI data based on the unified direct estimation approach. Remote Sensing of Environment, 2018, 204(2018):181-196.
    [28]陈军.基于多源遥感数据的拉森冰架形态演变及表面流速估算研究.南京:南京大学, 2016.[CHEN J. Study on morphology evolution and surface velocity estimations of Larsen ice shelf using multi-source remote sensing data. Nanjing University, 2016.]
    [29] CRéTAUX J F, JELINSKI W, CALMANT S, et al. SOLS:A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Advances in Space Research, 2011, 47(9):1497-1507.
    [30] DUAN Z, BASTIAANSSEN W G M. Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sensing of Environment, 2013, 34(5):403-416.
    [31]赵云,廖静娟,沈国状,等.卫星测高数据监测青海湖水位变化.遥感学报, 2017, 21(4):633-644.[ZHAO Y, LIAO J J, SHEN G Z, et al. Monitoring the water level changes in Qinghai Lake with satellite altimetry data. Journal of Remote Sensing, 2017, 21(4):633-644.]
    [32] MEDINA C E, GOMEZ-ENRI J, ALONSO J J, et al. Water level fluctuations derived from ENVISAT Radar Altimeter(RA-2)and in-situ, measurements in a subtropical water body:Lake Izabal(Guatemala). Remote Sensing of Environment, 2008, 112(9):3604-3617.
    [33] FRAPPART F, CALMANT S, CAUHOPéM, et al. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon Basin. Remote Sensing of Environment, 2006, 100(2):252-264.
    [34] ZHENG J J, KE C Q, SHAO Z D, et al. Monitoring changes in the water volume of Hulun Lake by integrating satellite altimetry data and Landsat images between 1992 and 2010. Journal of Applied Remote Sensing, 2016, 10(1):016029.
    [35] LEE H, SHUM C K, TSENG K H, et al. Elevation changes of Bering Glacier System, Alaska, from 1992 to 2010, observed by satellite radar altimetry. Remote Sensing of Environment, 2013, 132(10):40-48.
    [36]刘英,岳辉,王浩人,等. 2016.基于LEGOS HYDROWEB的青藏高原湖泊群水位和面积动态变化分析.科学技术与工程, 16(30):169-175.[LIU Y, YUE H, WANG H R, et al. Dynamic analysis of water level and area of Qinghai-Tibet Plateau group lakes based on LEGOS HYDROWEB. Science Technology&Engineering, 2016, 16(30):169-175.]
    [37]王松涛,金晓媚,高萌萌,等.阿牙克库木湖动态变化及其对冰川消融的响应.人民黄河, 2016, 38(7):64-67.[WANG S T, JIN X M, GAO M M, et al. Dynamic change of Ayakekumu Lake and its response to glaciers melting. Yellow River, 2016, 38(7):64-67.]
    [38] RAUP B, RACOVITEANU A, KHALSA S J S, et al. The GLIMS geospatial glacier database:A new tool for studying glacier change. Global&Planetary Change, 2007, 56(1):101-110.
    [39] KROPáCEK, J, MAUSSION, F, CHEN, F, et al. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data. Cryosphere, 2013, 7(1):287-301.
    [40] LIAO J J, SHEN G Z, LI Y K. Lake variations in response to climate change in the Tibetan Plateau in the past 40 years.International Journal of Digital Earth, 2013, 6(6):534-549.
    [41]祝合勇,杨太保,田洪阵. 1973-2010年阿尔金山冰川变化.地理研究, 2013, 32(8):1430-1438.[ZHU H Y, YANG T B, TIAN H Z. Glacier variation in the Altun Mountains from 1973 to 2010. Geographical Research, 2013, 32(8):1430-1438.]
    [42]苏宏超,魏文寿,韩萍.新疆近50 a来的气温和蒸发变化.冰川冻土, 2003, 25(2):174-178.[SU H C, WEI W T, HAN P. Changes in air temperature and evaporation in Xinjiang during recent 50 years. Journal of Glaciology&Geocryology, 2003, 25(2):174-178.]
    [43]秦伯强.气候变化对内陆湖泊影响分析.地理科学, 1993, 13(3):212-219.[QIN B Q. Analysis of the influence of climatic change on inland lakes. Scientia Geographica Sinica, 1993, 13(3):212-219.]
    [44]范云崎.西藏内陆湖泊补给系数的初步探讨.海洋与湖沼, 1983, 14(2):117-127.[FAN Y Q. The supply coefficient of the interior lakes in Xizang. Oceanologia et Limnologia Sinica, 1983, 14(2):117-127.]
    [45]吴绍洪,尹云鹤,郑度,等.青藏高原近30年气候变化趋势.地理学报, 2005, 60(1):3-11.[WU S H, YIN Y H,ZHENG D, et al. Climate changes in Tibetan Plateau during the last three decades. Acta Geographica Sinica, 2005, 60(1):3-11.]
    [46]林振耀,赵昕奕.青藏高原气温降水变化的空间特征.中国科学:D辑, 1996, 26(4):354-358.[LIN Z Y, ZHAO X Y.Spatial characters of temperature and precipitation in the Tibetan Plateau. Science in China:Ser. D, 1996, 26(4):354-358.]
    [47]魏善蓉,金晓媚,王凯霖,等.基于遥感的柴达木盆地湖泊面积变化与气候响应分析.地学前缘, 2017, 24(5):427-433.[WEI S R, JIN X M, WANG K L, et al. Response of lake area variation to climate change in Qaidam Basin based on remote sensing. Earth Science Frontiers, 2017, 24(5):427-433.]
    [48]边多,杨志刚,李林,等.近30年来西藏那曲地区湖泊变化对气候波动的响应.地理学报, 2006, 61(5):510-518.[BIAN D, YANG Z G, LI L, et al. The response of lake area change to climate variations in North Tibetan Plateau during last 30 years. Acta Geographica Sinica, 2006, 61(5):510-518.]
    [49]孟恺,石许华,王二七,等.青藏高原中部色林错湖近10年来湖面急剧上涨与冰川消融.科学通报, 2012, 57(7):571-579.[MENG K, SHI X H, WANG E Q, et al. High-altitude salt lake elevation changes and glacial ablation in Central Tibet, 2000-2010. Chinese Science Bulletin, 2012, 57(7):571-579.]
    [50] LEE H, SHUM C K, TSENG K H, et al. Present-day lake level variation from envisat altimetry over the Northeastern Qinghai-Tibetan Plateau:Links with precipitation and temperature. Terrestrial Atmospheric&Oceanic Sciences, 2011,22(2):169-175.
    [51] CHENG G, WU T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. Journal of Geophysical Research Earth Surface, 2007, 112(F2):93-104.
    [52]陈沈斌,刘允芬, THOMAS A.青藏高原20世纪后40年潜在蒸散趋势及其空间分布.自然资源学报, 2008, 23(6):990-1008.[CHEN S B, LIU Y F, THOMAS A. Potential evapotranspiration trends and its spatial distributions on the Tibetan Plateau from 1961 to 2000. Journal of Natural Resources, 2008, 23(6):990-1008.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700