药用植物分子遗传学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Molecular genetics research of medicinal plants
  • 作者:陈士林 ; 吴问广 ; 王彩霞 ; 向丽 ; 师玉华 ; 张栋 ; 胡灏禹
  • 英文作者:CHEN Shi-lin;WU Wen-guang;WANG Cai-xia;XIANG Li;SHI Yu-hua;ZHANG Dong;HU Hao-yu;Institute of Chinese Materia Medica,China Academy of Chinese Medical Sciences;
  • 关键词:药用植物 ; 分子遗传学 ; 遗传资源 ; 功能基因 ; 生物合成 ; 分子育种 ; 千种草药基因组
  • 英文关键词:medicinal plants;;molecular genetics;;genetic resources;;functional gene;;biosynthesis;;molecular breeding;;1 000 genome projects of medicinal plants
  • 中文刊名:ZGZY
  • 英文刊名:China Journal of Chinese Materia Medica
  • 机构:中国中医科学院中药研究所;
  • 出版日期:2019-05-21 16:58
  • 出版单位:中国中药杂志
  • 年:2019
  • 期:v.44
  • 基金:国家中药标准化项目(ZYB2H-C-JX-39)
  • 语种:中文;
  • 页:ZGZY201912001
  • 页数:12
  • CN:12
  • ISSN:11-2272/R
  • 分类号:7-18
摘要
随着现代生物技术的发展,药用植物分子遗传学研究逐步成为学术界的热点。该文首次提出了药用植物分子遗传学的研究体系,从遗传资源、基因组、基因功能和研究方法方面阐述了药用植物分子遗传学体系的基础;探讨了药用植物品种鉴定、分子育种以及生物合成方面的主要应用范围;指出药用植物分子遗传学的主要研究方向,重点推进千种草药基因组计划,建立以药用模式物种及突变体库为主体的功能基因研究平台,构建药用植物活性成分异源合成体系基因原件库及专一底盘细胞,通过分子育种培育高有效成分高抗性的药用植物新品种等。
        With the development of various biotechnology,the research on molecular genetics of medicinal plants has gradually deepened. In this paper,the research system of molecular genetics of medicinal plants was proposed for the first time,which was elaborated from the aspects of genetic resources,genome,gene function and research methods. The application fields of medicinal plant mainly contain species identification,molecular breeding and biosynthesis. The research directions of molecular genetics of medicinal plants in genetic resources,model platform,synthetic biology and molecular breeding were put forward,which include 1 000 genome projects of medicinal plants,model species and mutant libraries,gene original libraries of heterologous synthetic systems,construction gene original library and specific chassis cells in heterologous synthesis system of active ingredient,breeding of new varieties of medicinal plants with high active ingredient and high resistance based on molecular markers andtransgenes.
引文
[1]Chen S L,Xu J,Liu C,et al.Genome sequence of the model medicinal mushroom Ganoderma lucidum[J].Nat Commun,2012,3:913
    [2]Song C,Liu Y,Song A,et al.The chrysanthemum nankingense genome provides insights into the evolution and diversification of chrysanthemum flowers and medicinal traits[J].Mol Plant,2018,11(12):1482.
    [3]Shen Q,Zhang L,Liao Z,et al.The genome of Artemisia annua provides insight into the evolution of asteraceae family and artemisinin biosynthesis[J].Mol Plant,2018,11(6):776.
    [4]Guo L,Winzer T,Yang X,et al.The Opium Poppy genome and morphinan production[J]Science,2018,362(6412):343.
    [5]Chaw S M,Liu Y C,Wu Y W,et al.Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution[J].Nat Plants,2019,5(1):63.
    [6]Chen W,Kui L,Zhang G,et al.Whole-genome sequencing and analysis of the Chinese herbal plant Panax notoginseng[J].Mol Plant,2017,10(6):899.
    [7]Fu Y,Li L,Hao S,et al.Draft genome sequence of the Tibetan medicinal herb Rhodiola crenulata[J].Giga Science,2017,6(6):1.
    [8]Hu H,Shen X,Liao B,et al.Herbgenomics:a stepping stone for research into herbal medicine[J].Sci China:Life Sci,2019(6921):1.
    [9]Jayakodi M,Choi B S,Lee S C,et al.Ginseng genome database:an open-access platform for genomics of Panax ginseng[J].Bmc Plant Bio,2018,18:62.
    [10]Mochida K,Sakurai T,Seki H,et al.Draft genome assembly and annotation of Glycyrrhiza uralensis,a medicinal legume[J].Plant J,2017,89(2):181.
    [11]Peng X,Liu H,Chen P,et al.A chromosome-scale genome assembly of paper mulberry(Broussonetia papyrifera)provides new insights into its forage and papermaking usage[J]Mol Plant,2019,doi:10.1016/j.molp.2019.01.021.
    [12]Raymond O,Gouzy J,Just J,et al.The Rosa genome provides new insights into the domestication of modern roses[J].Nat Genat,2018,50(6):772.
    [13]Urasaki N,Takagi H,Natsume S,et al.Draft genome sequence of bitter gourd(Momordica charantia),a vegetable and medicinal plant in tropical and subtropical regions[J].DNA Res,2017,24(1):51.
    [14]Vining K J,Johnson S R,Ahkami A,et al.Draft genome sequence of Mentha longifolia and development of resources for mint cultivar improvement[J].Mol Plant,2017,10(2):323.
    [15]Wu G A,Terol J,Ibanez V,et al.Genomics of the origin and evolution of Citrus[J].Nature,2018,554(7692):311.
    [16]Xu J,Chu Y,Liao B,et al.Panax ginseng genome examination for ginsenoside biosynthesis[J]Giga Science,2017,doi:10.1093/gigascience/gix093.
    [17]Yuan Y,Jin X,Liu J,et al.The Gastrodia elata genome provides insights into plant adaptation to heterotrophy[J].Nat Commun,2018,9(1):1615.
    [18]Yang J,Zhang G,Zhang J,et al.Hybrid de novo genome assembly of the Chinese herbal fleabane Erigeron breviscapus[J].GigaScience,2017,doi:10.1093/gigascience/gix028.
    [19]Zhang D,Li W,Xia E H,et al.The medicinal herb Panax notoginseng genome provides insights into ginsenoside biosynthesis and genome evolution[J].Mol Plant,2017,10(6):903.
    [20]Lv Z Y,Wang S,Zhang F Y,et al.Overexpression of a novel NAC domain-containing transcription factor gene(Aa NAC1)enhances the content of artemisinin and increases tolerance to drought and Botrytis cinerea in Artemisia annua[J].Plant Cell Physiol,2016,57(9):1961.
    [21]Zhang L,Wu M,Teng Y,et al.Overexpression of the glutathione peroxidase 5(Rc GPX5)gene from Rhodiola crenulata increases drought tolerance in Salvia miltiorrhiza[J].Front Plant Sci,2019,doi:10.3389/fpls.2018.01950.
    [22]Jing F,Zhang L,Li M,et al.Abscisic acid(ABA)treatment increases artemisinin content in Artemisia annua by enhancing the expression of genes in artemisinin biosynthetic pathway[J]Biologia,2009,64(2):319.
    [23]Murata J,Bienzle D,Brandle J E,et al.Expressed sequence tags from Madagascar periwinkle(Catharanthus roseus)[J].Febs Letters,2006,580(18):4501.
    [24]Bryant L,Flatley B,Patole C,et al.Proteomic analysis of Artemisia annua-towards elucidating the biosynthetic pathways of the antimalarial pro-drug artemisinin[J].BMC Plant Bio,2015,15(1):175
    [25]Teoh K H,Polichuk D R,Reed D W,et al.Artemisia annua L.(Asteraceae)trichome-specific c DNAs reveal CYP71AV1,a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin[J].FEBS Lett,2006,580(5):1411.
    [26]Zhang Y,Teoh K H,Reed D W,et al.The molecular cloning of artemisinic aldehyde Delta 11(13)reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua[J].J Biol Chem,2008,283(31):21501.
    [27]Paddon C J,Westfall P J,Pitera D J,et al.High-level semisynthetic production of the potent antimalarial artemisinin[J].Nature,2013,496(7446):528.
    [28]Walker K,Schoendorf A,Croteau R.Molecular cloning of a taxa-4(20),11(12)-dien-5 alpha-ol-O-acetyl transferase c DNA from Taxus and functional expression in Escherichia coli[J].Arch Biochem Biophys,2000,374(2):371.
    [29]Walker K,Croteau R.Molecular cloning of a 10-deacetylbaccatinⅢ-10-O-acetyl transferase c DNA from Taxus and functional expression in Escherichia coli[J].Proc Natl Acad Sci USA,2000,97(2):583.
    [30]Luo X,Reiter M A,d'Espaux L,et al.Complete biosynthesis of cannabinoids and their unnatural analogues in yeast[J].Nature,2019,567(7746):123.
    [31]Zirpel B,Stehle F,Kayser O.Production of Delta 9-tetrahydrocannabinolic acid from cannabigerolic acid by whole cells of Pichia(Komagataella)pastoris expressing Delta 9-tetrahydrocannabinolic acid synthase from Cannabis sativa L[J].Biotechnol Lett,2015,37(9):1869.
    [32]Taura F,Sirikantaramas S,Shoyama Y,et al.Cannabidiolicacid synthase,the chemotype-determining enzyme in the fibertype Cannabis sativa[J].FEBS Lett,2007,581(16):2929.
    [33]Dai Z B,Liu Y,Zhang X A,et al.Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides[J].Metab Eng,2013,20:146.
    [34]Han J Y,Kim H J,Kwon Y S,et al.The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-Ⅱduring ginsenoside biosynthesis in Panax ginseng[J]Plant Cell Physiol,2011,52(12):2062.
    [35]Yan X,Fan Y,Wei W,et al.Production of bioactive ginsenoside compound K in metabolically engineered yeast[J].Cell Res,2014,24(6):770.
    [36]Xu Z C,Luo H M,Ji A J,et al.Global identification of the full-length transcripts and alternative splicing related to phenolic acid biosynthetic genes in Salvia miltiorrhiza[J].Front Plant Sci,2016,7:100.
    [37]Guo J,Zhou Y J J,Hillwigc M L,et al.CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts[J].Proc Natl Acad Sci USA,2013,110(29):12108.
    [38]Guo J,Ma X H,Cai Y,et al.Cytochrome P450 promiscuity leads to a bifurcating biosynthetic pathway for tanshinones[J].New Phytol,2016,210(2):525.
    [39]Collu G,Unver N,Peltenburg-Looman AMG,et al.Geraniol 10-hydroxylase,a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis[J].FEBS Lett,2001,508(2):215.
    [40]Irmler S,Schroder G,St-Pierre B,et al.Indole alkaloid biosynthesis in Catharanthus roseus:new enzyme activities and identification of cytochrome P450CYP72A1 as secologanin synthase[J].Plant J,2000,24(6):797.
    [41]Luca V,De Marineau C,Brisson N,et al.Molecular cloning and analysis of c DNA encoding a plant tryptophan decarboxylase:comparison with animal dopa decarboxylases[J].Proc Natl Acad Sci USA,1989,86(8):2582.
    [42]Mcknight T D,Roessner C A,Devagupta R,et al.Nucleotide sequence of a c DNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus[J].Nucleic Acids Res,1990,18(16):4939.
    [43]Geerlings A,IbaEz M M,Memelink J,et al.Molecular cloning and analysis of strictosidine beta-D-glucosidase,an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus[J].J Bio Chem,2000,275(5):3051.
    [44]Aimin H,Tao L,Lacy D,et al.Nocardia sp.carboxylic acid reductase:cloning,expression,and characterization of a new aldehyde oxidoreductase family[J].Appl Environ Microbiol 2004,70(3):1874.
    [45]Nakano M M,Corbell N,Besson J,et al.Isolation and characterization of sfp:a gene that functions in the production of the lipopeptide biosurfactant,surfactin,in Bacillus subtilis[J].Mol Gen Genet,1992,232(2):313.
    [46]Bai Y F,Bi H P,Zhuang Y B,et al.Production of salidroside in metabolically engineered Escherichia coli[J].Sci Rep,2014,4:6640
    [47]Torrens-Spence M P,Pluskal T,Li F S,et al.Complete pathway elucidation and heterologous reconstitution of Rhodiola salidroside biosynthesis[J].Mol Plant,2018,11(1):205.
    [48]Rastogi S,Shah S,Kumar R,et al.Ocimum metabolomics in response to abiotic stresses:cold,flood,drought and salinity[J].PLoS ONE,2019,14(2):e0210903.
    [49]Jarvis D E,Ho Y S,Lightfoot D J,et al.The genome of Chenopodium quinoa[J].Nature,2017,542(7641):307.
    [50]Thornsberry J M,Goodman M M,Doebley J,et al.Dwarf8 polymorphisms associate with variation in flowering time[J].Nat Genat,2001,28(3):286.
    [51]Tian F,Bradbury P J,Brown P J,et al.Genome-wide association study of leaf architecture in the maize nested association mapping population[J].Nat Genat,2011,43(2):159.
    [52]Kump K L,Bradbury P J,Wisser R J,et al.Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population[J].Nat Genat,2011,43(2):163.
    [53]Hsu P D,Lander E S,Zhang F.Development and applications of CRISPR-Cas9 for genome engineering[J].Cell,2014,157(6):1262.
    [54]Wolt J D,Wang K,Yang B.The regulatory status of genome-edited crops[J].Plant Biotechnol J,2016,14(2):510.
    [55]Qian Q,Guo L B,Smith S M,et al.Breeding high-yield superior quality hybrid super rice by rational design[J].Natl Sci Rev,2016,3(3):283.
    [56]Fang C,Ma Y M,Wu S W,et al.Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean[J].Genome Biol,2017,18(1):161
    [57]Li Q S,Li Y,Song J Y,et al.High-accuracy de novo assembly and SNP detection of chloroplast genomes using a SMRT circular consensus sequencing strategy[J].New Phytol,2014,204(4):1041.
    [58]黄林芳,郑司浩,武拉斌,等.基于化学成分及分子特征中药材肉苁蓉生态型研究[J].中国科学:生命科学,2014,44(3):318.
    [59]刘霞,林韵涵,谢彩香,等.道地药材川麦冬和浙麦冬的生态遗传分化[J].中国实验方剂学杂志,2017,23(17):27.
    [60]Graham I A,Besser K,Blumer S,et al.The genetic map of Artemisia annua L.identifies loci affecting yield of the antimalarial drug artemisinin[J].Science,2010,327(5963):328.
    [61]Shen Q,Zhang L D,Liao Z H,et al.The genome of Artemisia annua provides insight into the evolution of asteraceae family and artemisinin biosynthesis[J].Mol Plant,2018,11(6):776.
    [62]Frick S,Kramell R,Kutchan T M.Metabolic engineering with a morphine biosynthetic P450 in opium poppy surpasses breeding[J].Metab Eng,2007,9(2):169.
    [63]Desgagne-Penix I,Facchini P J.Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in Opium Poppy[J].Plant J,2012,72(2):331.
    [64]Staginnus C,Zoerntlein S,de Meijer E.A PCR marker linked to a THCA synthase polymorphism is a reliable tool to discriminate potentially THC-rich plants of Cannabis sativa L[J].J Forensic Sci,2014,59(4):919.
    [65]罗青,曲玲,曹有龙,等.抗蚜虫转基因枸杞的初步研究[J].宁夏农林科技,2001(1):1.
    [66]董林林,陈中坚,王勇,等.药用植物DNA标记辅助育种(一):三七抗病品种选育研究[J].中国中药杂志,2017,42(1):56.
    [67]唐美琼,闵丹丹,李刚,等.三七病程相关蛋白PR10-1基因克隆及功能初步分析[J].药学学报,2015,50(2):227.
    [68]沈奇,张栋,孙伟,等.药用植物DNA标记辅助育种(Ⅱ)丰产紫苏新品种SNP辅助鉴定及育种研究[J].中国中药杂志,2017,42(9):1668.
    [69]Yu C,Qiao G,Qiu W,et al.Molecular breeding of water lily:engineering cold stress tolerance into tropical water lily[J].Hort Res,2018,doi:10.1038/s41438-018-0086-2.
    [70]Chen N,Liu Y,Liu X,et al.Enhanced tolerance to water deficit and salinity stress in transgenic Lycium barbarum L.plants ectopically expressing ATHK1,an Arabidopsis thaliana histidine kinase gene[J].Plant Mol Biol Rep,2009,27(3):321.
    [71]Yan T,Chen M,Shen Q,et al.HOMEODOMAIN PROTEIN 1 is required for jasmonate-mediated glandular trichome initiation in Artemisia annua[J].New Phytol,2017,213(3):1145.
    [72]Inui T,Kawano N,Shitan N,et al.Improvement of benzylisoquinoline alkaloid productivity by overexpression of 3'-hydroxy-nmethylcoclaurine 4'-o-methyltransferase in transgenic Coptis japonica plants[J].Biol Pharm Bull,2012,35(5):650.
    [73]Wei T,Deng K,Gao Y,et al.Arabidopsis DREB1B in transgenic Salvia miltiorrhiza increased tolerance to drought stress without stunting growth[J].Plant Physiol Biochem,2016,104:17.
    [74]Wu Y,Liu C,Kuang J,et al.Overexpression of SmLEA enhances salt and drought tolerance in Escherichia coli and Salvia miltiorrhiza[J].Protoplasma,2014,251(5):1191.
    [75]王丹丹,张彦文.东北红豆杉杂交种鉴定及遗传多样性分析[J].东北师大学报:自然科学版,2019,51(1):113.
    [76]Anbessa Y,Taran B,Warkentin T D,et al.Genetic analyses and conservation of QTL for ascochyta blight resistance in chickpea(Cicer arietinum L.)[J].Theor Appl Genet,2009,119(4):757.
    [77]Lu J,Liu Y,Xu J,et al.High-density genetic map construction and stem total polysaccharide content-related QTL exploration for chinese endemic Dendrobium(Orchidaceae)[J].Front Plant Sci,2018,9:398.
    [78]Westfall P J,Pitera D J,Lenihan J R,et al.Production of amorphadiene in yeast,and its conversion to dihydroartemisinic acid,precursor to the antimalarial agent artemisinin[J].Proc Natl Acad Sci USA,2012,109(3):111.
    [79]Ajikumar P K,Xiao W H,Tyo K E J,et al.Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli[J].Science,2010,330(6000):70.
    [80]Luo X Z,Reiter M A,d'Espaux L,et al.Complete biosynthesis of cannabinoids and their unnatural analogues in yeast[J].Nature,2019,567(7746):123.
    [81]Zhou Y J J,Gao W,Rong Q X,et al.Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production[J].J Am Chem Soc,2012,134(6):3234.
    [82]Dai Z B,Liu Y,Huang L Q,et al.Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae[J].Biotechnol Bioeng,2012,109(11):2845.
    [83]Dai Z B,Wang B B,Liu Y,et al.Producing aglycons of ginsenosides in bakers'yeast[J].Sci Rep,2014,4:3698.
    [84]Wang P P,Wei W,Ye W,et al.Synthesizing ginsenoside Rh2in Saccharomyces cerevisiae cell factory at high-efficiency[J].Cell Discov,2019,doi:10.1038/s41421-018-0075-5.
    [85]Gassel S,Breitenbach J,Sandmann G.Genetic engineering of the complete carotenoid pathway towards enhanced astaxanthin formation in Xanthophyllomyces dendrorhous starting from a high-yield mutant[J].Appl Microbiol Biot,2014,98(1):345.
    [86]Yan Y J,Kohli A,Koffas M A G.Biosynthesis of natural flavanones in Saccharomyces cerevisiae[J]Appl Environ Microb,2005,71(9):5610.
    [87]Liu X N,Cheng J,Zhang G H,et al.Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches[J].Nat Commun,2018,doi:10.1038/s41467-018-02883-z.
    [88]Hawkins K M,Smolke C D.Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae[J].Nat Chem Biol,2008,4(9):564.
    [89]Qua Y,Easson M L A E,Froese J,et al.Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast[J].Proc Natl Acad Sci USA,2015,112(19):6224.
    [90]Brown S,Clastre M,Courdavault V,et al.De novo production of the plant-derived alkaloid strictosidine in yeast[J].Proc Natl Acad Sci USA,2015,112(11):3205.
    [91]Bai Y F,Yin H,Bi H P,et al.De novo biosynthesis of gastrodin in Escherichia coli[J].Metab Eng,2016,35:138.
    [92]Sydor T,Schaffer S,Boles E.Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium[J].Appl Environ Microb,2010,76(10):3361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700