高光泽番茄育种及果实表面光泽度
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-glossiness tomato breeding and fruit surface glossiness
  • 作者:周蓉 ; 赵统敏 ; 赵丽萍 ; 王银磊 ; 宋刘霞 ; 余文贵
  • 英文作者:ZHOU Rong;ZHAO Tong-min;ZHAO Li-ping;WANG Yin-lei;SONG Liu-xia;YU Wen-gui;Institute of Vegetable Crops,Jiangsu Academy of Agricultural Sciences;Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement;
  • 关键词:番茄 ; 育种 ; 光泽度
  • 英文关键词:tomato;;breeding;;glossiness
  • 中文刊名:JSNB
  • 英文刊名:Jiangsu Journal of Agricultural Sciences
  • 机构:江苏省农业科学院蔬菜研究所;江苏省高效园艺作物遗传改良重点实验室;
  • 出版日期:2018-12-29 10:23
  • 出版单位:江苏农业学报
  • 年:2018
  • 期:v.34
  • 基金:国家重点研发计划项目(2017YFD0101904)
  • 语种:中文;
  • 页:JSNB201806033
  • 页数:4
  • CN:06
  • ISSN:32-1213/S
  • 分类号:242-245
摘要
随着人们生活水平的提高,消费者对番茄的品质要求越来越高,培育高光泽的番茄品种成为育种家的主要目标之一。本文主要从番茄果实表面光泽度鉴定方法、基因定位及光泽度与角质层的关系三方面,对目前番茄果实光泽度方面的研究进行综述,以期为番茄高光泽分子标记辅助育种体系的建立和果皮光泽度形成的遗传机理研究提供参考。
        With the improvement of people's living standard,consumers are increasingly demanding the quality of tomatoes. Breeding tomato varieties with high glossiness has become one of the main purposes of breeders. The previous researches concerning fruits glossiness mainly in the aspect of identification method,gene mapping and the relationship between glossiness and cuticle were revieved in this paper in order to provide a reference for the establishment of molecular marker assisted breeding system on tomato high-glossiness and genetic mechanism of the fruit glossiness formation.
引文
[1]芮文婧,张倩男,王晓敏,等.47份大果番茄种质资源表型性状的遗传多样性[J].江苏农业科学,2017,45(12):92-95.
    [2]李晓蕾,李景富,康立功,等.番茄品质遗传及育种研究进展[J].中国蔬菜,2010,1(14):1-7.
    [3] CAUSSE M,BURET M,ROBINI K,et al. Inheritance of nutritional and sensory quality traits in fresh market tomato and relation to consumer preferences[J]. Journal of Food Science,2003,68(7):2342-2350.
    [4]赵润洲,刘鸣韬.番茄果实色泽与色素组成的关系[J].河南农业科学,2011,40(9):98-100.
    [5] LECOMTE L,GAUTIER A,LUCIANI A,et al. Recent advances in molecular breeding:the example of tomato breeding for flavor traits[J]. Acta Horticulturae,2004,637:231-242.
    [6] PETIT J,BRES C,JUST D,et al. Analyses of tomato fruit brightness mutants uncover both cutin-deficient and cutin-abundant mutants and a new hypomorphic allele of GDSL lipase[J]. Plant Physiology,2014,164(2):888-906.
    [7]周冰钰,秦智伟,周秀艳,等.黄瓜种质资源果皮表面光泽性评价[J].中国蔬菜,2013(22):27-31.
    [8]朱明涛,孙亚林,郑莎,等.分子标记辅助聚合番茄抗病基因育种[J].园艺学报,2010,37(9):1416-1422.
    [9]许向阳,赵婷婷,李景富.番茄抗叶霉病基因Cf12的分子标记及种质资源筛选[C]//中国园艺学会.2011年学术年会论文摘要集.北京:园艺学报,2011.
    [10] XU X,LU L,ZHU B. QTL mapping of cucumber fruit flesh thickness by SLAF-seq[J]. Scientific Reports,2015,5:15829-15838.
    [11]刘德春,曾琼,刘勇,等.‘纽荷尔’脐橙及其光泽型突变体果皮色差指数变化规律的研究[J].果树学报,2013,30(6):914-917.
    [12]王伟杰,徐建国,徐昌杰.宫内伊予柑果实发育期间色泽和色素的变化[J].园艺学报,2006,33(3):461-465.
    [13]周蓉,蒋芳玲,梁梅,等.用色差仪法定量分析番茄果实番茄红素的含量[J].江西农业学报,2012,24(9):45-48.
    [14]王利群,戴雄泽.色差计在辣椒果实色泽变化检测中的应用[J].辣椒杂志,2009,7(3):23-26.
    [15] GOMEZ R,COSTA J,AMO M,et al. Physicochemical and colorimetric evaluation of local varieties of tomato grown in SE Spain[J]. Journal of the Science of Food and Agriculture,2001,81(11):1101-1105.
    [16] LOPEZ C A F,GOMEZ P A. Comparison of color indexes for tomato ripening[J]. Horticultura Brasileira,2004,22(3):534-537.
    [17]王孝宣.增强番茄果实颜色基因的精细定位及相关基因的差异表达[D].北京:中国农业科学研究院,2004.
    [18] RAM B S,GU L J. Ripening-dependent changes in antioxidants,color attributes,and antioxidant activity of seven tomato(Solanum lycopersicum L.)cultivars[J]. Journal of Analytical Methods in Chemistry,2016(3):1-13.
    [19]潘磊庆,孙柯,屠康,等.一种苹果表面光泽度检测方法:CN105699397A[P]. 2016-06-22.
    [20] POOLE C F. Genetics of cultivated cucurbits[J]. Journal of Heredity,1944,35(4):122-128.
    [21]杨绪勤.黄瓜果瘤和果实无光泽性状基因的定位与功能分析[D].上海:上海交通大学,2014.
    [22] FANOURAKIS N E,SIMON P W. Analysis of genetic linkage in the cucumber[J]. Journal of Heredity,1987,78(4):238-242.
    [23] MIAO H,ZHANG S,WANG X,et al. A linkage map of cultivated cucumber(Cucumis sativus L.)with 248 microsatellite marker loci and seven genes for horticulturally important traits[J]. Euphytica,2011,182(2):167-176.
    [24] SEMAGN K,BEYENE Y,WARBURTON M L,et al. Meta-analyses of QTL for grain yield and anthesis silking interval in 18maize populations evaluated under water-stressed and well-watered environments[J]. BMC Genomics,2013,14(1):313.
    [25] HOLLAND J B. Genetic architecture of complex traits in plants[J]. Current Opinion in Plant Biology,2007,10(2):156-161.
    [26] COLLARD B C,MACKILL D J. Marker-assisted selection:an approach for precision plant breeding in the twenty-first century[J].Philosophical Transactions of the Royal Society of London Series Bbiological Sciences,2008,363(1491):557-572.
    [27] MICHELMORE R W,PARAN I,KESSELI R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proceedings of the National Academy of Sciences of the United States of America,1991,88(21):9828-9832.
    [28] SUN Y,WANG J,JONATHANH C,et al. Efficiency of selective genotyping for genetic analysis of complex traits and potential applications in crop improvement[J]. Molecular Breeding,2010,26(3):493-511.
    [29] LIU D C,ZENG Q,JI Q X,et al. A comparison of the ultrastructure and composition of fruits’cuticular wax from the wild-type‘newhall’navel orange[Citrus sinensis(L.)Osbeck cv. Newhall]and its glossy mutant[J]. Plant Cell Reports,2012,31(12):2239-2246.
    [30]许发喜,刘翠芳,邹杰,等.植物角质层对非生物逆境胁迫响应研究进展[J].中国生物工程杂志,2010,30(8):126-130.
    [31] HAMANN T. Plant cell wall integrity maintenance as an essential component of biotic stress response mechanisms[J]. Frontiers in Plant Science,2012,3(4):77.
    [32] SALADIE M,MATAS A J,ISAACSON T,et al. A reevaluation of the key factors that influence tomato fruit softening and integrity[J]. Plant Physiology,2007,144(2):1012-1028.
    [33] ISAACSON T,KOSMA D K,MATAS A J,et al. Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties,but not transpirational water loss[J]. The Plant Journal,2009,60(2):363-377.
    [34] DOMINGUEZ E,CUARTERO J,HEREDIA A. An overview on plant cuticle biomechanics[J]. Plant Science,2011,181(2):77.
    [35]刘润生.纽荷尔脐橙(Citrus sinensis Osbeck Newhall)蜡质突变株系的生物学评价[D].武汉:华中农业大学,2014.
    [36] SATO S,TABATA S,HIRAKAWA H,et al. The tomato genome sequence provides insights into fleshy fruit evolution[J]. Nature,2012,485(7400):635.
    [37] LIN T,ZHU G,ZHANG J,et al. Genomic analyses provide insights into the history of tomato breeding[J]. Nature Genetics,2014,46(11):1220-1226.
    [38] MUELLER L A,SOLOW T H,TAYLOR N,et al. The SOL Genomics Network:a comparative resource for Solanaceae biology and beyond[J]. Plant Physiology,2005,138(3):1310-1317.
    [39] ADATO A,MANDEL T,MINTZORON S,et al. Fruit-surface flavonoid accumulation in tomato is controlled by a Sl MYB12-regulated transcriptional network[J]. Plos Genetics,2009,5(12):e1000777.
    [40] RUIZMAY E,HUCKO S,HOWE K J,et al. A comparative study of lectin affinity based plant n-glycoproteome profiling using tomato fruit as a model[J]. Molecular and Cellular Proteomics,2014,13(2):566-579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700