铬铁原矿粉激光制备高熵合金复合涂层的组织与性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and Properties of High Entropy Alloy Composite Coating Prepared by Laser with Raw Chromite Powder
  • 作者:李刚 ; 张井波 ; 刘囝 ; 宋艳东 ; 郭玉洁 ; 付晓帆
  • 英文作者:LI Gang;ZHANG Jing-bo;LIU Jian;SONG Yan-dong;GUO Yu-jie;FU Xiao-fan;School of Material Science and Engineering, Liaoning Technical University;
  • 关键词:激光熔覆 ; 高熵合金 ; 铬铁原矿粉 ; 复合涂层 ; 显微组织 ; 耐磨性
  • 英文关键词:laser cladding;;high entropy alloys;;raw chromite powder;;composite coating;;microstructure;;wear resistance
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:辽宁工程技术大学材料科学与工程学院;
  • 出版日期:2019-03-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 语种:中文;
  • 页:BMJS201903033
  • 页数:6
  • CN:03
  • ISSN:50-1083/TG
  • 分类号:242-247
摘要
目的用铬铁原矿粉快速直接制备高熵合金复合涂层,研究其组织结构及性能,提高基体表面硬度和耐磨性。方法采用激光熔覆技术在40Cr钢表面制备高熵合金复合涂层,运用金相显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)及硬度计、磨粒磨损机,分析高熵合金复合涂层不同深度的显微组织、物相结构及力学性能。结果高熵合金复合涂层与基体结合良好,物相结构为简单BCC结构的过饱和固溶体,显微组织为典型胞状和树枝晶组织,且原位自生形成的细小碳化物颗粒强化相弥散分布于基体。深度为0.1 mm时,复合涂层的显微组织形貌最细小,且存在一定程度的成分偏析。复合涂层显微硬度平均为6.48 GPa,为基材40Cr钢的2倍以上。高熵合金复合涂层不同深度的磨损率均低于基体的磨损率,且随着深度的增加,磨损率逐渐升高,当深度为0.1 mm时,磨损率最低,为0.17 mg/mm2,耐磨性最好。结论以铬铁原矿粉为掺杂组元,采用激光熔覆技术成功制备出掺杂原位自生颗粒强化相的高熵合金复合涂层,显著提高了基体表面硬度和耐磨性。
        The work aims to prepare high entropy alloy composite coating with the raw chromite powder quickly so as to improve surface hardness and wear resistance by studying the microstructure and properties. The high entropy alloy composite coatings were prepared on the surface of 40 Cr steel by laser cladding. The microstructure, phase structure and mechanical properties of high entropy alloy composite coatings at different depths were studied by optical microscope(OM), scanning electron microscope(SEM), X-ray diffraction(XRD), hardness tester and abrasive wear machine. The high entropy alloy composite coating had good bonding morphology with the substrate, the phase was simple supersaturated solid solution with BCC structure. The microstructure was a typical cellular and dendrite structure, and the fine carbide particles formed in situ were dispersed on the substrate. When the depth was 0.1 mm, the microstructure of the composite coating was the smallest, where a certain degree of segregation happened. The average microhardness of the composite coating was about 6.48 GPa, which was more than 2 times of the 40 Cr steel substrate. The wear rate of the high entropy alloy composite coating was lower than that of the substrate,and with the depth increasing, the wear rate increased gradually. When the depth was 0.1 mm, the wear rate of 0.17 mg/mm~2 was the smallest, which indicated wear resistance was the best. The high entropy alloy composite coating with in-situ particle reinforced phaseis successfully prepared by laser cladding technology with the raw chromite powder as the doping component. The hardness and wear resistance of the substrate surface are greatly improved.
引文
[1]KOLELI N,DEMIR A.Environmental materials and waste[M].CA:Academic Press,2016:245-263.
    [2]SIBANDA V,KOPONG R,NDLOVU S,et al.Ball milling of high carbon ferrochrome slag to liberate the alloy for gravity concentration[J].International journal of mineral processing,2016,157:46-54.
    [3]王晨亮,邹坚坚,胡真,等.云南某低品位铬铁矿石选矿工艺研究[J].金属矿山,2016,V45(2):72-76.WANG Chen-liang,ZOU Jian-jian,HU Zhen,et al.Research of beneficiation process of a low-grade chromite ore of Yunnan province[J].Metal mine,2016,V45(2):72-76.
    [4]NIKIFOROVA E M,EROMASOV R G,VASILYEVA MN,et al.Iron ores processing waste materials utilization in soft-mud molding ceramicm bricks production[J].Obogashchenie rud,2016,4:61-66.
    [5]SCHEUNIS L,CAMPFORTS M,JONES P T,et al.Spinel saturation of a PbO based slag as a method to mitigate the chemical degradation of magnesia-chromite bricks[J].Journal of the european ceramic society,2016,36(16):4291-4299.
    [6]PARIRENYATWA S,ESCUDERO-CASTEJON L,SAN-CHEZ-SEGADO S,et al.Comparative study of alkali roasting and leaching of chromite ores and titaniferous minerals[J].Hydrometallurgy,2016,165:213-226.
    [7]YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J].Advanced engineering materials,2004,6(5):299-303.
    [8]黄元盛,蔡铭洪,叶均蔚.AlCoCrCu0.5Ni Fe高熵合金氧化物薄膜光学特性的研究[J].表面技术,2016(2):129-133.HUANG Yuan-sheng,CAI Ming-hong,YE Jun-wei.Optical properties of sputtered oxide films of Al Co Cr Cu0.5Ni Fe high-entropy alloy[J].Surface technology,2016(2):129-133.
    [9]OTTO F,DLOUHYA,PRADEEP K G,et al.Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures[J].Acta materialia,2016,112:40-52.
    [10]高峰,吴尧鹏,刘军,等.铬铁矿掺杂对压裂支撑剂结构与性能的影响[J].无机材料学报,2013,28(9):1019-1024.GAO Feng,WU Yao-peng,LIU Jun,et al.Effects of chromite additive on the microstructure and performance of bauxite-based fracturing proppant[J].Journal of inorganic materials,2013,28(9):1019-1024.
    [11]MERKLE R K W,SUNDER R P V,LOUBSER M.XRFanalysis of chromite-rich samples-another look at powder briquettes[J].X-ray spectrometry,2010,37(3):273-279.
    [12]ZHANG Y,ZUO T T,CHENG Y Q,et al.High-entropy alloys with high saturation magnetization,electrical resistivity,and malleability[J].Scientific reports,2013,3:1455.
    [13]TSAO T K,YEH A C,KUO C M,et al.High temperature oxidation and corrosion properties of high entropy superalloys[J].Entropy,2016,18(2):62.
    [14]YE Y X,LIU C Z,WANG H,et al.Friction and wear behavior of a single-phase equiatomic TiZrHfNb highentropy alloy studied using a nanoscratch technique[J].Acta materialia,2018,147:78-89.
    [15]谢红波,刘贵仲,郭景杰,等.Al元素对AlxFe Cr Co Cu V高熵合金组织及摩擦性能的影响[J].材料工程,2016,44(4):65-70.XIE Hong-bo,LIU Gui-zhong,GUO Jing-jie,et al.Effects of Al addition on microstructure and wear properties of AlxFeCrCoCuV high-entropy alloys[J].Journal of materials engineering,2016,44(4):65-70.
    [16]ZHANG Y,ZUO T T,TANG Z,et al.Microstructures and properties of high-entropy alloys[J].Progress in materials science,2014,61(8):1-93.
    [17]SANTODONATO L J,ZHANG Y,FEYGENSON M,et al.Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy[J].Nature communications,2015,6:5964.
    [18]张素芳,杨潇,张勇.Al0.3Cr Cu Fe Ni2高熵合金单晶材料的制备及性能[J].金属学报,2013,49(11):1473-1480.ZHANG Su-fang,YANG Xiao,ZHANG Yong.Processing and properties of Al0.3Cr Cu Fe Ni2 single crystal highentropy alloy[J].Acta metallurgica sinica,2013,49(11):1473-1480.
    [19]PICKERING E J,MUNOZ-MORENO R,STONE H J,et al.Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi[J].Scripta materialia,2016,113:106-109.
    [20]张晖,潘冶,何宜柱.激光熔敷Fe Co Ni Cr Al2Si高熵合金涂层[J].金属学报,2011,47(8):1075-1079.ZHANG Hui,PAN Ye,HE Yi-zhu.Laser cladding FeCo Ni Cr Al2Si high-entropy alloy coating[J].Acta metallurgica sinica,2011,47(8):1075-1079.
    [21]KASHAEV N,VENTZKE V,STEPANOV N,et al.Laser beam welding of a CoCrFeNiMn-type high entropy alloy produced by self-propagating high-temperature synthesis[J].Intermetallics,2018,96С:63-71.
    [22]安旭龙,刘其斌.WC颗粒对激光熔覆高熵合金Si FeCoCrTi涂层的组织及性能的影响[J].稀有金属材料与工程,2016,45(9):2424-2428.AN Xu-long,LIU Qi-bin.Effect of WC particles on microstructure and properties of high entropy alloy SiFeCoCrTi coating synthesized by laser cladding[J].Rare metal materials and engineering,2016,45(9):2424-2428.
    [23]MUNITZ A,SALHOV S,HAYUN S,et al.Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy[J].Journal of alloys&compounds,2016,683:221-230.
    [24]隋艳伟,陈霄,戚继球,等.多主元高熵合金的研究现状与应用展望[J].功能材料,2016,47(5):50-54.SUI Yan-wei,CHEN Xiao,QI Ji-qiu,et al.Research progress of high-entropy alloys with multi-principal elements and its prospective application[J].Journal of functional materials,2016,47(5):50-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700