可随机成型的透波性胶凝材料的微波加热特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microwave heating properties of tailorable wave-transparent cementitious materials
  • 作者:王宜灿 ; 王文龙 ; 孙静 ; 毛岩鹏 ; 赵希强 ; 宋占龙
  • 英文作者:WANG Yican;WANG Wenlong;SUN Jing;MAO Yanpeng;ZHAO Xiqiang;SONG Zhanlong;National Engineering Laboratory of Coal-fired Pollutants Emission Reduction, Shandong Provincial Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University;
  • 关键词:铝酸钙 ; 胶凝材料 ; 微波加热 ; 力学性能 ; 透波性能 ; 稳定性
  • 英文关键词:calcium aluminate;;cementitious materials;;microwave heating;;mechanical properties;;wave-transparent properties;;stability
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:燃煤污染物减排国家工程实验室山东省能源碳减排技术与资源化利用重点实验室山东大学能源与动力工程学院;
  • 出版日期:2017-04-06 18:15
  • 出版单位:化工学报
  • 年:2017
  • 期:v.68
  • 基金:山东省自然科学杰出青年基金项目(JQ201514);; 山东省重点研发计划项目(2016GSF116006)~~
  • 语种:中文;
  • 页:HGSZ201707038
  • 页数:7
  • CN:07
  • ISSN:11-1946/TQ
  • 分类号:319-325
摘要
研究了硬化铝酸钙材料在不同煅烧温度(700,800,900,1000,1100,1200,1300,1400和1500℃)下的吸波能力、抗压强度、体积收缩率和质量损失率,采用XRF和XRD对不同煅烧温度(800,1000,1300和1500℃)下的试样进行表征,利用铝酸钙材料制备一种简易杯状容器并对其进行微波冲击特性测试。结果表明:硬化铝酸钙材料的吸波能力随煅烧温度的升高而降低,超过1000℃后,吸波能力趋于稳定;材料抗压强度随煅烧温度的升高先升高,在800℃左右达到最高,然后逐渐降低,并在1300℃达到最低,再经过小幅地升高后趋于稳定;同时,材料煅烧后体积收缩率和质量损失率都随着温度的升高而增加;微波冲击特性测试表明硬化铝酸钙材料在长时间微波辐照下强度基本不发生变化,微波-金属放电试验证明该胶凝材料硬化后的高温稳定性好,具有优异的抗高温冲击能力。综上所述,1000℃煅烧后的硬化铝酸钙材料具有透波性能好、力学性能优异、高温稳定性好的特点,非常适用于微波加热领域。
        The microwave absorbing ability, compressive strength, volume shrinkage and mass loss rate of hardened calcium aluminate(CA) material at different calcination temperatures(700, 800, 900, 1000, 1100, 1200, 1300, 1400 and 1500℃) were studied. The specimens obtained at different calcination temperatures(800, 1000, 1300 and 1500℃) were characterized using XRF and XRD methods. A simple cup-shaped vessel was prepared by using CA and the microwave shock characteristics of this device were tested. The experimental results showed that the microwave absorbing ability of hardened CA decreased first and then tended to be stable with the increase of calcination temperature. After 1000℃, the microwave absorbing ability was so weak that it is no longer affected by temperature. The compressive strength of this material increased with the rise of calcination temperature, and reached the maximum at around 800℃. Then it gradually decreased and reached the minimum at 1300℃, and then stabilized after a slight increase. In the meantime, the volume shrinkage and mass loss rate increased with the rise of calcination temperature. The test results of microwave shock characteristics showed that the intensity of hardened CA basically did not change under the high-power and long-time microwave irradiation. The microwave-metal discharge test proved that this cementitious material after hardening has excellent mechanical properties and high temperature stability. In summary, hardened CA has good wave-transparent properties, excellent mechanical properties and outstanding high temperature stability, being very suitable for using in microwave heating.
引文
[1]SUN J,WANG W L,YUE Q Y,et al.Review on microwave-metal discharges and their applications in energy and industrial processes[J].Applied Energy,2016,175:141-157.
    [2]MISHRA P,UPADHYAYA A,SETHI G.Modeling of microwave heating of particulate metals[J].Metallurgical and Materials Transactions B,2006,37(5):839-845.
    [3]OLAYA A,MORENO S,MOLINA R.Synthesis of pillared clays with aluminum by means of concentrated suspensions and microwave radiation[J].Catalysis Communications,2009,10(5):697-701.
    [4]LIAO J B,BO L L,ZHANG Y C,et al.Synergistic effect of Si C and Cu O/zeolite catalyst on the removal of toluene under microwave irradiation[J].Acta Scientiae Circumstantiae,2011,31(11):2416-2422.
    [5]KIM T H,RUPANI H,PALLAVKAR S,et al.Destruction of toxic volatile organic compounds(VOCs)in a microwave-assisted catalyst bed[J].Journal of the Chinese Institute of Chemical Engineers,2006,37(5):519-526.
    [6]MACQUARRIE D J,CLARK J H,FITZPATRICK E.The microwave pyrolysis of biomass[J].Biofuels Bioproducts&Biorefining,2012,6(5):549-60.
    [7]MIZERACZYK J,JASINSKI M,ZAKRZEWSKI Z.Hazardous gas treatment using atmospheric pressure microwave discharges[J].Plasma Physics and Controlled Fusion,2005,47(12B):B589-602.
    [8]ALWAKEEL H B,KARIM Z A A,ALKAYIEM H H.Optimizing electro-thermo helds for soot oxidation using microwave heating and metal[J].IOP Conference Series:Materials Science and Engineering,2015,78(1):012-018.
    [9]孙银宝,张宇民,韩杰才.耐高温透波材料及其性能研究进展[J].宇航材料工艺,2008,38(3):11-14.SUN Y B,ZHANG Y M,HAN J C.High-temperature resistant microwave-transmitting materials and their properties[J].Aerospace Materials&Technology,2008,38(3):11-14.
    [10]支晓洁,彭金辉,郭胜惠,等.透波材料在微波冶金领域的应用进展[J].化工科技,2010,18(1):64-67.ZHI X J,PENG J H,GUO S H,et al.Research progress on application of the wave-transparent materials in the microwave metallurgy fields[J].Science&Technology In Chemical Industry,2010,18(1):64-67.
    [11]闫联生,李贺军,崔红.高温陶瓷透波材料研究进展[J].宇航材料工艺,2004,34(2):14-16.YAN L S,LI H J,CUI H.Development of high temperature ceramic wave-transparent materials[J].Aerospace Materials&Technology,2004,34(2):14-16.
    [12]QI G J,ZHANG C R,HU H F.High strength three-dimensional silica fiber reinforced silicon nitride-based composites via polyhydridomethylsilazane pyrolysis[J].Ceramics International,2007,33(5):891-894.
    [13]王东,刘永胜,成来飞,等.氮化物高温透波材料及其应用研究进展[J].航空制造技术,2008,(3):70-72.WANG D,LIU Y S,CHENG L F,et al.Nitride high temperature radome material and its application progress[J].Aeronautical Manufacturing Technology,2008,(3):70-72.
    [14]张伟儒,王重海,刘健,等.高性能透波Si3N4-BN基陶瓷复合材料的研究[J].硅酸盐通报,2003,22(3):3-6.ZHANG W R,WANG C H,LIU J,et al.Study on high properties and microwave-transmitting Si3N4-BN based ceramic composites[J].Bulletin of the Chinese Ceramic Society,2003,22(3):3-6.
    [15]李端,张长瑞,李斌,等.氮化硼透波材料的研究进展与展望[J].硅酸盐通报,2010,29(5):1072-1085.LI R,ZHANG C R,LI B,et al.Progress and prospect of wave-transparent boron nitride materials[J].Bulletin of the Chinese Ceramic Society,2010,29(5):1072-1085.
    [16]姜勇刚,张长瑞,曹峰,等.高超音速导弹天线罩透波材料研究进展[J].硅酸盐通报,2007,26(3):500-505.JIANG Y G,ZHANG C R,CAO F,et al.Development of microwave transparent materials for hypersonic missile radomes[J].Bulletin of the Chinese Ceramic Society,2007,26(3):500-505.
    [17]王峰,王继辉,肖永栋.磷酸铝系透波复合材料的力学性能与介电性能研究[J].宇航材料工艺,2006,36(6):26-28.WANG F,WANG J H,XIAO Y D.The mechanical and dielectric properties of aluminum phosphate matrix composite[J].Aerospace Materials&Technology,2006,36(6):26-28.
    [18]秦景燕,王玉江,任和平,等.低温烧成纯铝酸钙水泥的机理研究[J].硅酸盐通报,2002,21(3):51-58.QIN J Y,WANG Y J,REN H P,et al.Study on the burned calcium aluminate cements at low temperature[J].Bulletin of the Chinese Ceramic Society,2002,21(3):51-58.
    [19]YANG J Z,FANG M H,HUANG Z H,et al.Solid particle impact erosion of alumina-based refractories at elevated temperatures[J].Journal of the European Ceramic Society,2012,32(2):283-289.
    [20]张巍.不定形耐火材料之可塑料的研究进展[J].硅酸盐通报,2012,31(2):316-321.ZHANG W.Research progress on plastic refractory of monolithic refractories[J].Bulletin of the Chinese Ceramic Society,2012,31(2):316-321.
    [21]ALONSO M C,VERA-AGULLO J,GUERREIRO L,et al.Calcium aluminate based cement for concrete to be used as thermal energy storage in solar thermal electricity plants[J].Cement and Concrete Research,2016,82:74-86.
    [22]刘振.微波诱导热解电子废弃物过程中金属放电热效应研究[D].济南:山东大学,2012.LIU Z.Research on the heating effects of metal discharge during microwaveinduced pyrolysis of e-waste[D].Jinan:Shandong University,2012.
    [23]孙静.微波诱导热解废旧印刷电路板(WPCB)的实验和机理研究[D].济南:山东大学,2012.SUN J.Experimental and mechanism research on microwave-induced pyrolysis of waste printed circuit boards(WPCR)[D].Jinan:Shandong University,2012.
    [24]刘赞群,邓德华.胶凝材料对水泥砂浆耐高温性能的影响[J].混凝土,2003,(12):19-20.LIU Z Q,DENG D H.Influence of cementious materials on the high temperature properties of mortars[J].Concrete,2003,(12):19-20.
    [25]冯竟竟,傅宇方,陈忠辉,等.高温对水泥基材料微观结构的影响[J].建筑材料学报,2009,12(3):318-322.FENG J J,FU Y F,CHEN Z H,et al.Effect of high temperatures on microstructure of cement-based composite material[J].Journal of Building Materials,2009,12(3):318-322.
    [26]柳献,袁勇,叶光,等.高性能混凝土高温微细观结构演化研究[J].同济大学学报(自然科学版),2008,36(11):1473-1477.LIU X,YUAN Y,YE G,et al.Study on pore structure evolution of high performance concrete with elevated temperatures[J].Journal of Tongji University(Natural Science),2008,36(11):1473-1477.
    [27]WANG Y L,LIN X C,ZHU B Q,et al.Microstructure evolution during the heating process and its effect on the elastic properties of CAC-bonded alumina castables[J].Ceramics International,2016,42(9):11355-11362.
    [28]BRAULIO M A L,MILANEZ D H,SAKO E Y,et al.Expansion behavior of cement-bonded alumina-magnesia refractory castables[J].American Ceramic Society Bulletin,2007,86(12):9201-9206.
    [29]LUZ A P,PANDOLFELLI V C.Halting the calcium aluminate cement hydration process[J].Ceramics International,2011,37(8):3789-3793.
    [30]TIAN Y P,PAN X L,YU H Y,et al.Formation mechanism of calcium aluminate compounds based on high-temperature solid-state reaction[J].Journal of Alloys and Compounds,2016,670:96-104.
    [31]潘华锦,张丽,周娴.吸波物质电磁参数应具备特征的理论分析[J].军械工程学院学报,2016,28(1):27-30.PAN H J,ZHANG L,ZHOU X.Analysis on characteristic of electromagnetic parameters for absorbing material[J].Journal of Ordnance Engineering College,2016,28(1):27-30.
    [32]李艳君,刘晓存,陶华锋,等.煅烧温度及配料对纯铝酸钙水泥性能的影响[J].水泥工程,2004,(1):15-18.LI Y J,LIU X C,TAO H F,et al.Effect of calcination temperature and composition on properties of pure calcium aluminate cement[J].Cement Engineering,2004,(1):15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700