水下清淤人工冻结板温度场数值分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical analysis of temperature field of underwater dredging artificial frozen plate
  • 作者:吴雨薇 ; 胡俊 ; 王志鑫 ; 曾东灵 ; 汪树成
  • 英文作者:WU Yuwei;HU Jun;WANG Zhixin;ZENG Dongling;WANG Shucheng;College of Civil Engineering and Architecture, Hainan University;Hainan Investigation Institute of Hydrogeology and Engineering Geology;
  • 关键词:水下冻结板 ; 人工冻结 ; 温度场 ; 数值模拟
  • 英文关键词:underwater freeze plate;;artificial freezing;;temperature field;;numerical simulation
  • 中文刊名:MDKT
  • 英文刊名:Coal Geology & Exploration
  • 机构:海南大学土木建筑工程学院;海南省水文地质工程地质勘察院;
  • 出版日期:2018-09-03 13:29
  • 出版单位:煤田地质与勘探
  • 年:2019
  • 期:v.47;No.272
  • 基金:海南省自然科学基金项目(518QN307,518MS122);; 中国博士后科学基金项目(2018M630722);; 海南省研究生创新科研课题(Hys2018-165)~~
  • 语种:中文;
  • 页:MDKT201902026
  • 页数:9
  • CN:02
  • ISSN:61-1155/P
  • 分类号:172-180
摘要
为研究水下清淤人工冻结板温度场的发展规律以及冻土帷幕形成的过程,通过有限元分析软件,采用单因素分析法进行数值分析,研究了水下人工冻结板在几何及物理环境变化条件下的冻结规律。结果表明:冻结板不同几何尺寸与清淤深度的相关性较弱,调整冻结板的几何尺寸仅能改变清淤面积;对清淤环境来说,土层的导热系数越大,比热容越小,原始地温越低,其降温速度越快,清淤越高效;砂土的冻结效果要明显优于黏土;相变潜热对土体降温的影响十分有限;盐水降温计划中最低温度对清淤深度有较大影响,在–50℃以前,冻土帷幕发展较快,每降低10℃冻土帷幕的发展厚度增加约0.4 m,而在–50℃以后冻土帷幕的发展较慢,每降低10℃冻土帷幕厚度的发展仅约为0.05m。因此,在工程实际中,冻结初期通过调节盐水降温计划可以较好的实现冻结效果;建议盐水降温计划最低温度设置为–50℃,此时可以得到的有效清淤深度约1.5m。研究结果可为今后的相关实际工程提供参考依据。
        In order to understand the development of the temperature field of artificial freeze dredging plates and the process of the formation of frozen curtains, the finite element analysis was used to perform numerical analysis using the single factor analysis method for research of the frozen process in different circumstances of geometric size of plate and physical environment of the soil under water. The results show that the correlation between the different geometric dimensions of the frozen plate and the dredging depth is weak, and the geometric dimension of the frozen plate can only change the area of dredging; for the dredging environment, the greater thermal conductivity of the soil layer, the smaller the specific heat, the smaller the specific heat, the lower the original geothermal temperature, the faster the cooling rate, and the more efficient the dredging is; sand is more efficient to be frozen than that of clay; the effect of the latent heat of phase change on the cooling of the soil is very limited; The lowest temperature has a great influence on the depth of dredging. Before –50℃, the curtain of frozen soil develops rapidly. The development thickness of frozen soil curtain increases by about 0.4 m per 10℃ reduction, and the development of frozen soil curtain after-50℃, the development of curtain thickness of permafrost is slower, only about 0.05 m for every 10℃ reduction; therefore, in the actual project, the freezing effect can be better achieved by adjusting the brine cooling plan at the initial stage of freezing. It is recommended that the minimum temperature of the brine cooling plan be set at –50℃, and the available dredging depth at this time is about 1.5 m. The results obtained can provide reference for related actual projects in the future.
引文
[1]朱永兴.自动水下清淤机及其推广[J].水产科技情报,1999,26(4):181-182.ZHU Yongxing.Automatic underwater dredger and its popularization[J].Fisheries Science and Technology Information,1999,26(4):181-182.
    [2]谢国华,闫晓满,张程.广州市疏浚淤泥固化技术与工艺探讨[J].水利水电技术,2011,42(4):9-11.XIE Guohua,YAN Xiaoman,ZHANG Cheng.Dredging sludge solidification technology and technology in Guangzhou[J].Water Resources and Hydropower Technology,2011,42(4):9-11.
    [3]林彬.两种淤泥无害化处置工艺在广州市亚运治水中的应用[J].广东水利水电,2011(1):7-9.LIN Bin.Two silt harmless disposal processes applied in Guangzhou asian games water control[J].Guangdong Water Resources and Hydropower,2011(1):7-9.
    [4]刘贵云,姜佩华.河道淤泥资源化的意义及其途径研究[J].东华大学学报(自然科学版),2002,28(1):33-36.LIU Guiyun,JIANG Peihua.The significance and ways of river silt recycling[J].Journal of Donghua University(Natural Science),2002,28(1):33-36.
    [5]武金明,高孟理.兰州雁滩南河道引水防淤方案研究[J].甘肃水利水电技术,2015,51(4):34-37.WU Jinming,GAO Mengli.Study on the dredging and anti-sedimentation schemes of south river channel in Yantan,Lanzhou[J].Gansu Water Resources and Hydropower Engineering,2015,51(4):34-37.
    [6]侯春芳.中小河道治理中的清淤及淤泥处理技术[J].河南水利与南水北调,2015(19):56-57.HOU Chunfang.The dredging and sludge treatment technology in the treatment of small and medium rivers[J].Henan Water Resources and South-to-North Water Transfer,2015(19):56-57.
    [7]唐运平,张志扬,邓小文,等.利用城市生态河道深度净化污水处理厂出水的工程技术研究[J].环境工程学报,2009,3(7):1165-1169.TANG Yunping,ZHANG Zhiyang,DENG Xiaowen,et al.Study on the engineering technology of purifying water from sewage treatment plant by utilizing the depth of urban ecological rivers[J].Environmental Engineering Journal,2009,3(7):1165-1169.
    [8]胡俊.水下人工冻结板:中国,201521125662.8[P].2015-12-30.
    [9]张克锁.巢湖底泥疏挖及处置工程竣工[M].巢湖年鉴,2004:125.
    [10]HU Jun,LIU Yong,WEI Hong,et al.Finite-element analysis of the heat transfer of the horizontal ground freezing method in shield-driven tunneling[J].International Journal of Geomechanics,American Society of Civil Engineers,2017,17(10):04017080.
    [11]冉光兴,曹卉,李巍.东钱湖底泥环境特征与疏浚方案[J].水利水电科技进展,2007,27(2):73-76.RAN Guangxing,CAO Hui,LI Wei.Environmental characteristics and dredging scheme of sediment in Dongqian Lake[J].Progress in Science and Technology of Water Resources,2007,27(2):73-76.
    [12]LIU Yong,HU Jun,XIAO Huawen,et al.Effects of material and drilling uncertainties on artificial ground freezing of cementadmixed soils[J].Canadian Geotechnical Journal,2017,54(5):1659-1671.
    [13]刘勇,李福豪,陈健,等.深层搅拌水泥土基底加固层的三维随机有限元分析[J].岩土工程学报,2018,40(6):338-344.LIU Yong,LI Fuhao,CHEN Jian,et al.Three-dimensional stochastic finite element analysis of deep mixing cement-soil reinforced layer[J].Chinese Journal of Geotechnical Engineering,2018,40(6):338-344.
    [14]胡俊,杨平.大直径杯型冻土壁温度场数值分析[J].岩土力学,2015,36(2):523-531.HU Jun,YANG Ping.Numerical analysis of temperature field of large diameter cup type frozen soil wall[J].Rock and Soil Mechanics,2015,36(2):523-531.
    [15]胡俊,唐益群,张皖湘.水泥改良前后土体热物理参数试验研究[J].地下空间与工程学报,2016,12(5):1198-1204.HU Jun,TANG Yiqun,ZHANG Wanxiang.Experimental study on soil thermophysical parameters before and after cement improvement[J].Chinese Journal of Underground Space and Engineering,2016,12(5):1198-1204.
    [16]胡俊,卫宏,刘勇.冻土帷幕设置加热限位管时温度场数值分析[J].隧道建设,2016,36(6):688-694.HU Jun,WEI Hong,LIU Yong.Numerical analysis of temperature field when setting up heating limit tube in frozen soil curtain[J].Tunnel Construction,2016,36(6):688-694.
    [17]HU Jun,LIU Yong,LI Yuping,et al.Artificial ground freezing in tunnelling through aquifer soil layers:A case study in Nanjing Metro Line 2[J].KSCE Journal of Civil Engineering,2018,22(10):1-7.
    [18]LIU Yong,HU Jun,WEI Hong,et al.A direct simulation algorithm for a class of beta random fields in modelling material properties[J].Computer Methods in Applied Mechanics and Engineering,2017,326:642-655.
    [19]LIU Yong,HU Jun,LI Yuping,et al.Statistical evaluation of the overall strength of a soil-cement column under axial compression[J].Construction and Building Materials,2017,132:51-60.
    [20]ZHANG Lei,LIU Yong,HU Jun.Statistical analysis of earthquake-induced bending moment in fixed-head piles embedded in soft clay[J].Journal of Engineering Mechanics,American Society of Civil Engineers,2017,143(9):04017059.
    [21]PAN Yutao,LIU Yong,HU Jun,et al.Probabilistic investigations on the water tightness of jet-grouted ground considering geometric imperfections in diameter and position[J].Canadian Geotechnical Journal,2017,54(10):1447-1459.
    [22]吴雨薇,胡俊,汪树成.中空圆环形冻结管单管冻结温度场数值分析[J].海南大学学报(自然科学版),2018,36(1):41-48.WU Yuwei,HU Jun,WANG Shucheng.Numerical analysis of freezing temperature field of hollow circular annulus freezing tube[J].Journal of Hainan University(Natural Science),2018,36(1):41-48.
    [23]吴雨薇,胡俊,汪树成.不同盐水温度下单管冻结温度场数值分析[J].森林工程,2017,33(6):60-66.WU Yuwei,HU Jun,WANG Shucheng.Numerical analysis of single-tube freezing temperature field with different brine temperatures[J].Journal of Forest Engineering,2017,33(6):60-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700