新能源汽车驱动电机用烧结钕铁硼磁体的热稳定性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermal stability of the sintered Nd-Fe-B magnet for drive motors for new energy automobiles
  • 作者:吴波 ; 邓小霞
  • 英文作者:WU Bo;DENG Xiao-xia;BYD Auto Company Limited;
  • 关键词:NdFeB烧结磁体 ; 磁性能 ; 工作温度 ; 开路磁通 ; 热稳定性 ; 不可逆退磁
  • 英文关键词:NdFeB sintered magnet;;magnetic properties;;operation temperature;;open circuit flux;;thermal stability;;irreversible demagnetization
  • 中文刊名:CXCQ
  • 英文刊名:Journal of Magnetic Materials and Devices
  • 机构:比亚迪汽车有限公司;
  • 出版日期:2019-05-15
  • 出版单位:磁性材料及器件
  • 年:2019
  • 期:v.50;No.244
  • 语种:中文;
  • 页:CXCQ201903012
  • 页数:5
  • CN:03
  • ISSN:51-1266/TN
  • 分类号:57-60+78
摘要
通过对两种不同尺寸、不同磁导(P_c=0.26和P_c=0.57)的磁体进行分析,考察在最高工作温度下长时间保持的耐久性能,即实验前后的磁体开路磁通变化、材料磁性能变化以及磁体的温度系数。实验发现,同样性能(牌号)、但不同磁导的磁体在磁路中所处的工作点不同,抗热退磁能力也不同,即使经历相同的实验条件,磁性能下降也不同。相对于P_c=0.26的样品,P_c=0.57的样品其热稳定性和抗热退磁能力更好,即使长时间的高温作用,仍然保持较高的磁性能。这不仅对电机设计提供了指导,同时为电机设计时校核磁体退磁风险提供依据和参考。
        The magnets with two different size and two different permeance were analyzed in this paper. The durability of the magnets kept long at the maximum working temperature were studied, that is, changes of the flux, magnetic properties and temperature coefficients between before and after the experiment were studied. The experimental results indicate that the same grade magnets with different permeance were at different working points in the magnetic path so that the ability of thermal demagnetization was different although exposed at the same experimental conditions. The drop rate of the magnetic properties were not the same, specifically, the thermostability and the ability to resistance to thermal demagetization of the magnet with permeance of 0.57 were preferable compared to one with permeance of 0.26. Even though, the magnet was applied at high temperature for a long time, it could maintain higher magnetic properties. The results provide for not only guidance to moter design but gist and reference for checking demagnetization risk in the electric design.
引文
[1]韩永杰,安浩.汽车永磁驱动电机现状及发展趋势[J].上海汽车, 2009,(6):38-40.
    [2]孙玉玲,刘艳,林伟义.电动汽车用永磁同步电机永磁体最佳工作点分析[J].汽车电器, 2011,(4):12-16.
    [3]张传林,胡文静.稀土永磁材料的发展及在电机中的应用[J].微电机, 2003, 36(1):38-39.
    [4]莫青.稀土永磁材料在电机中的应用,机械工程师, 2001,(3):36-38.
    [5]孙绪新,周寿增.稀土永磁电机的开发与应用(二)[J].磁性材料及器件, 2005, 36(6):13-16, 26.
    [6]谭春林,包大新,严密.高工作温度烧结钕铁硼磁体的研究现状[J].材料导报, 2005, 19(4):97-100,104.
    [7]孙绪新,周寿增.稀土永磁电机的开发与应用[J].磁性材料及器件, 2005, 36(5):22-35.
    [8]朱俊.稀土永磁电机的应用现状及其发展趋势[J].中国重型装备, 2008,(4):38-42.
    [9]胡建新,郭朝晖,潘伟,等.内禀矫顽力Hcj对Nd Fe B磁体温度稳定性的影响[J].金属功能材料,2004,11(2):1-41.
    [10]宋后定.常用永磁材料的稳定性[J].磁性材料及器件,2008, 39(1):66-68.
    [11]周寿增,董清飞.超强永磁体——稀土铁系用磁材料(第二版)[M].北京:冶金工业出版社, 2004. 34-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700