PEPA-EG/EP复合涂料的制备及其阻燃防腐性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Pentaerythritol Phosphate-Expandable Graphite/Waterborne Epoxy Composite Coatings and Their Flame Retardant and Anticorrosive Properties
  • 作者:王娜 ; 周美慧 ; 李龙 ; 张静
  • 英文作者:WANG Na;ZHOU Mei-hui;LI Long;ZHANG Jing;Advanced Manufacturing Institute of Polymer Industry (AMIPI), Shenyang University of Chemical Technology;Sino-Spanish Advanced Materials Institute, Shenyang University of Chemical Technology;
  • 关键词:可膨胀石墨 ; 季戊四醇磷酸酯 ; 水性环氧树脂 ; 阻燃 ; 防腐
  • 英文关键词:expandable graphite;;pentaerythritol phosphate;;waterborne epoxy resin;;flame retardant;;anticorrosion
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:沈阳化工大学高分子产业高端制造研究院;沈阳化工大学中西高等材料研究院;
  • 出版日期:2019-03-14 10:44
  • 出版单位:精细化工
  • 年:2019
  • 期:v.36
  • 基金:辽财指高端人才([2016]864);; 辽宁省高校创新人才计划([2017]053)~~
  • 语种:中文;
  • 页:JXHG201906008
  • 页数:7
  • CN:06
  • ISSN:21-1203/TQ
  • 分类号:55-61
摘要
以季戊四醇磷酸酯(PEPA)与可膨胀石墨(EG)作为复合填料,添加到水性环氧树脂(EP)中制备出PEPA-EG/EP复合涂料。通过耐火极限分析、热失重分析、极限氧指数测试、垂直燃烧测试、残炭扫描电镜分析、残炭红外分析、电化学实验和附着力实验,考察了不同质量配比的复合填料对PEPA-EG/EP复合涂料阻燃性能和防腐性能的影响。结果表明:当复合填料与水性环氧树脂的质量比为15∶100时,涂料具有最佳的阻燃性能和防腐性能,其钢片背温达到500℃的时间是38 min,极限氧指数达到27.2%,垂直燃烧等级达到V-1级,800℃时残炭量为27.79%,并且在480 h的电化学测试中,其阻抗值达到最大,为9.24*10~6Ω×cm~2。
        Pentaerythritol phosphate(PEPA) and expandable graphite(EG) as composite fillers were added into waterborne epoxy resin(EP) to prepare PEPA-EG/EP composite coatings. The effect of mass ratio of composite filler on the flame retardancy and corrosion resistance of PEPA-EG/EP composite coating was investigated by fire resistance limit analysis, thermogravimetric analysis, limiting oxygen index test,vertical burning test, residual carbon scanning electron microscopy, residual carbon infrared analysis,electrochemical impedance spectroscopy and adhesion experiment. The results show that when the mass ratio of composite filler to waterborne epoxy resin is 15∶100, the prepared composite coating has the best flame retardant properties and corrosion resistance. The time when the back temperature of steel sheet reaches 500 ℃ is 38 min, the limiting oxygen index is 27.2%, the vertical combustion performance reaches V-1 level, the residual carbon amount increases to 27.79% at 800 ℃, and the composite coating has the highest impedance value(9.24*10~6 Ω×cm~2) during electrochemical impedance spectroscopy testing after 480 hours of immersing.
引文
[1]Wang M,Liu X.Exploration on the development of steel structure in construction field in China[J].Value Engineering,2014,79(6):1044-1066.
    [2]Tong Bin(童彬).Preparation and properties of waterborne epoxy multifunctional steel structural coatings[D].Beijing:University of Chinese Academy of Sciences(中国科学院大学),2016.
    [3]Wu Liancheng(吴连成).Construction technology of steel structure coating and painting technology[J].technology entrepreneur(科技创业家),2011,(8):51.
    [4]Tian Fuxun(田福迅),Li Minfeng(李敏风).Development trend of water-borne steel structure coatings and coating technology[J].China Coatings(中国涂料),2016,31(8):25-29.
    [5]Huang Wei(黄卫).Preparation and research of fire-retardant and anticorrosive coatings of Chloroether resin for steel structures[J].China Petroleum and Chemical Standard and Quality,2012,33(11):24-28.
    [6]Qin Wenqing(覃文清),Li Feng(李风).Study on anticorrosive properties of fire retardant coatings for steel structures[J].Coatings Technology&Abstracts,2013,34(3):10-12.
    [7]Wang Na(王娜),Wang Shuwei(王树伟),Teng Haiwei(滕海伟),et al.Preparation of chitosan-based flame retardant and its application in fireproof coatings[J].Fine Chemicals(精细化工),2017,34(11):1-8.
    [8]Wang N,Cheng K,Wu H,et al.Effect of nano-sized mesoporous silica MCM-41 and MMT on corrosion properties of epoxy coating[J].Progress in Organic Coatings,2012,75(4):386-391.
    [9]Wang N,Gao H,Zhang J,et al.Effect of graphene oxide/ZSM-5hybrid on corrosion resistance of waterborne epoxy coating[J].Coatings:2018,8(5):179.
    [10]Zhang Weixing(张威星).Flame retardant modification and properties of polystyrene[D].Taiyuan:Taiyuan University of Technology(太原理工大学),2016.
    [11]Liu Lizhu(刘立柱),Zhang Jiawen(张佳文),Xu Hang(徐航),et al.Preparation and anticorrosion mechanism of graphite microchip/epoxy composite anticorrosive coatings[J].Acta Materiae Compositae Sinica(复合材料学报),2018,35(7):1738-1744.
    [12]Wang Z,Han E,Ke W.Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings[J].Corrosion Science,2007,49(5):2237-2253.
    [13]Liu Xuejun(刘学军),Fu Ruoyu(付若愚),Xian Caijun(咸才军),et al.The application of expandable graphite in fire resistive intumescent coating for steel structures[J].Fine Chemicals(精细化工),2005,22(5):328-330,341.
    [14]Wang Na(王娜),Yu Fang(于芳),Wang Sheng(王升),et al.Caged pentaerythritol phosphate/expandable graphite synergistic flame retardant natural rubber[J].Acta Materiae Compositae Sinica(复合材料学报),2018,35(11):1-7.
    [15]Standardization Administration of the People’s Republic of China(中国国家标准化管理委员会).Determination of rubber burning performance(橡胶燃烧性能的测定):GB/T 10707-2008[S].Beijing:Standards Press of China(中国标准出版社),2008.
    [16]ASTM D4541-02:Standard Test Method for Pull-Off Strength of Coatings Using Portable Adhesion Testers[S].Philadelphia,ASTM,2002.
    [17]Duquesne S,Bras M L,Bourbigot S,et al.Thermal degradation of polyurethane and polyurethane/expandable graphite coatings[J].Polymer Degradation&Stability,2001,74(3):493-499.
    [18]Li Qingying(李清英),Xia Zhengbin(夏正斌),Fan Fangqiang(范方强),et al.Effect of sepiolite and expandable graphite on the water-based intumescent flame-retardant coatings for steel structure[J].Fine Chemicals(精细化工),2012,29(11):1131-1136.
    [19]Liu Yanlin,He Jiyu,Yang Rongjie.Effects of dimethyl methylphosphonate,aluminum hydroxide,ammonium polyphosphate,and expandable graphite on the flame retardancy and thermal properties of polyisocyanurate-polyurethane foams[J].Industrial&Engineering Chemistry Research,2015,54:5876-5884.
    [20]Balabanovich A I.Thermal decomposition study of intumescent additives:pentaerythritol phosphate and its blend with melamine phosphate[J].Thermochimica Acta,2005,435(2):188-196.
    [21]Wang Na(王娜),Zhang Yinan(张义男),Luan Honghe(栾鸿赫),et al.Preparation and anticorrosion properties of waterborne epoxy coatings filled with organic microspheres[J].Acta Materiae Compositae Sinica(复合材料学报),2017,31(1):1-8.
    [22]Tsao-Cheng H,Yu A,Tzu-Chun Y,et al.Advanced anticorrosive coatings prepared from electroactive epoxy-SiO2 hybrid nanocomposite materials[J].Electrochimica Acta,2011,56(17):6142-6149.
    [23]Wang N,Fu W,Zhang J,et al.Corrosion performance of waterborne epoxy coatings containing polyethylenimine treated mesoporous-TiO2,nanoparticles on mild steel[J].Progress in Organic Coatings,2015,89:114-122.
    [24]Tzu-Chun Yeh,Tsao-Cheng Huang,Hsiu-Ying Huang,et al.Electrochemical investigations on anticorrosive and electrochromic properties of electroactive polyuria[J].Polymer Chemistry,2012,3(8):2209-2216.
    [25]Tsao-Cheng H,Tzu-Chun Y,Hsiu-Ying H,et al.Electrochemical studies on aniline-pentamer-based electroactive polyimide coating:corrosion protection and electrochromic properties[J].Electrochim.Acta,2011,56(27):10151-10158.
    [26]He Jie(何杰),Qi Rui(阎瑞),Ma Shining(马世宁).Electrochemical method for corrosion behavior of epoxy coating/substrate in 3.5%Na Cl solution[J].China Surface Engineering(中国表面工程),2006,19(2):47-50.
    [27]Wang N,Zhang Y,Chen J,et al.Dopamine modified metal-organic frameworks on anti-corrosion properties of waterborne epoxy coatings[J].Progress in Organic Coatings,2017,109:126-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700