高温胁迫下坛紫菜中红藻糖苷及其异构体的含量变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Different Variations of Floridoside and Isofloridoside inPyropia haitanensis Under Heat Resistance
  • 作者:赵佳丽 ; 杨怡 ; 赵倩 ; 钟琪 ; 陈娟娟 ; 杨锐 ; 陈海敏
  • 英文作者:ZHAO Jiali;YANG Yi;ZHAO Qian;ZHONG Qi;CHEN Juanjuan;YANG Rui;CHEN Haimin;School of Marine Science, Ningbo University;Collenge of Food and Pharmaceutical Sciences;
  • 关键词:坛紫菜 ; 热激 ; 高效液相色谱质谱联用 ; 红藻糖苷
  • 英文关键词:Pyropia haitanensis;;heat resistance;;high performance liquid chromatography coupled with mass spectrometry;;floridoside
  • 中文刊名:HNXB
  • 英文刊名:Journal of Nuclear Agricultural Sciences
  • 机构:宁波大学海洋学院;宁波大学食品与药学学院;
  • 出版日期:2018-11-19 13:07
  • 出版单位:核农学报
  • 年:2019
  • 期:v.33
  • 基金:浙江省自然科学基金(LY17D060002);; 国家自然科学基金(41706170);; 浙江省新苗人才计划项目(2017R405049);; 宁波大学王宽诚幸福基金
  • 语种:中文;
  • 页:HNXB201901016
  • 页数:9
  • CN:01
  • ISSN:11-2265/S
  • 分类号:109-117
摘要
为了解热激应答下坛紫菜中红藻糖苷和异红藻糖苷含量的变化,以及两者与坛紫菜高温耐受性之间的联系,以ME-05坛紫菜为样品,采用高效液相色谱三重四级杆质谱联用技术(HPLC-MS)分析35℃高温胁迫和20℃恢复培养条件下,坛紫菜中红藻糖苷及其异构体含量的变化趋势,通过两者的含量波动,探讨其与坛紫菜耐受性之间的关系。结果表明,相同品种、相同日龄但生长地点不同的坛紫菜中,红藻糖苷含量稳定;不同生长阶段的坛紫菜经35℃高温胁迫后,红藻糖苷和异红藻糖苷含量减少,经恢复培养3 h后发现红藻糖苷和异红藻糖苷含量逐渐回升并超过对照组;红藻糖苷和异红藻糖苷的变化率为:Ⅲ组(生长期第75天)>Ⅳ组(生长期第135天)>Ⅱ组(生长期第45天)>Ⅰ组(丝状体),红藻糖苷的变化更为敏感且具有规律。综上,红藻糖苷与坛紫菜的生长状况和抗逆能力相关,可作为紫菜选育的指标物。本研究结果为进一步探讨坛紫菜在高温胁迫下的生理响应及健康养殖奠定了理论基础。
        In order to investigate the variation of floridoside and isofloridoside of Pyropia haitanensis under high temperature environment, P. haitanensis ME-05 was used as experimental material to understand the relationship between the contents fluctuant and the high temperature resistance. High performance liquid chromatography coupled with mass spectrometry was used to analyze the variations of floridoside and isofloridoside of P. haitanensis under heat shock and recovery periods. The results showed that the contents of floridoside varied a little for P. haitanensis from different locations, but the same breed and age of P. haitanensis. When the heat shock temperature was set at 35℃, the contents of floridoside and isofloridoside were reduced by comparing to those of control group in all of P. haitanensis of different growth locations. When in the recovery period, the contents of them were gradually increased and exceeded the control group as the recovery time sustained to 3 h. The variation rates of floridoside and isofloridoside in different growth stages were shown as follows: Group Ⅲ(day 75 of growth)>Group Ⅳ(day 135 of growth)>Group Ⅱ(day 45 of growth)>Group Ⅰ(conchocelis). The variation of floridoside was more sensitive and regular than those of isofloridoside. It can be suggested that floridosides was related to growth and stress resistance of P. haitanensis, which can be used as a potential reference for the cultivation of P. haitanensis. The results of this study provide the basis for the further exploration of the physiological response under heat stress and healthy cultivation of P. haitanensis.
引文
[1] 孙彬, 黄健, 马家海, 宋武林, 谢程亮. 坛紫菜品质分析[C]//中国海洋湖沼学会藻类学分会会员大会暨第十四次学术讨论会. 呼和浩特, 2007
    [2] 谢宗墉. 海洋水产品营养与保健[M]. 青岛: 青岛海洋大学出版社, 1991
    [3] 刘亮, 钟云凯, 曹少谦, 戚向阳, 罗彤. 紫菜多糖抗氧化活性及体外免疫调节作用研究[J]. 核农学报, 2016, 30(12): 2355-2362
    [4] 顾晓慧. 紫菜对大鼠生理机能的影响及对大鼠铅中毒的促排作用研究[D]. 青岛: 中国海洋大学, 2014
    [5] 赵峰. 紫菜的药用[J]. 开卷有益: 求医问药, 2015(8): 63
    [6] Zhu Z, Qian F, Yang R, Chen J, Luo Q, Chen H, Yan X. A lipoxygenase from red alga Pyropia haitanensis,a unique enzyme catalyzing the free radical reactions of polyunsaturated fatty acids with triple ethylenic bonds[J]. PLoS One, 2015, 10(2): e0117351
    [7] 郑海斌, 蒋霞敏, 傅财华, 毛欣欣, 石灏, 王腾飞. 浙江东极潮间带底栖海藻分布特征[J]. 宁波大学学报(理工版), 2011, 24(4): 29-35
    [8] 刘文礼, 阎希柱. 基于生态足迹的近海坛紫菜养殖可持续发展评估-以福建晋江为例[J]. 应用海洋学学报, 2017(4): 580-585
    [9] Ye Y, Zhang L, Yang R, Luo Q, Chen H, Yan X, Tang H. Metabolic phenotypes associated with high-temperature tolerance of Porphyra haitanensis strains[J]. Journal of Agricultural and Food Chemistry, 2013, 61(35): 8356-8363
    [10] 宋悦, 崔晓山, 陈娟娟, 杨锐, 严小军. 不同高温胁迫条件下的坛紫菜中植物激素分析[J]. 水产学报, 2017, 41(10): 1578-1587
    [11] 王淑刚, 杨锐, 周新倩, 宋丹丹, 孙雪, 骆其君. 高温胁迫下坛紫菜(Pyropia haitanensis)对无机碳的利用[J]. 海洋与湖沼, 2013, 44(5): 1378-1385
    [12] 宋丹丹. 高温胁迫下坛紫菜中红藻糖苷含量变化以及相关抗逆基因的表达[D]. 宁波: 宁波大学, 2014
    [13] Gegner H M, Ziegler M, R?decker N, Buitrago C, Aranda M, R.Voolstra C. High salinity conveys thermotolerance in the coral model Aiptasia[J]. Biology Open, 2017, 6(12): 1943-1948
    [14] Karsten U, Barrow K D, King R J. Floridoside, L-isofloridoside, and D-isofloridoside in the red alga Porphyra columbina (seasonal and osmotic effects)[J]. Plant Physiology, 1993, 103(2): 485-491
    [15] Pocard J A, Smith L T, Smith G M, Rudulier D L. A prominent role for glucosylglycerol in the adaptation of Pseudomonas mendocina SKB70 to osmotic stress[J]. Journal of Bacteriology, 1994, 176(22): 6877-6884
    [16] Coppin A, VarréJ S, Lienard L, Dauvillée D, Guérardel Y, Soyer-Gobillard M O, Buléon A, Ball S, Tomavo S. Evolution of plant-like crystalline storage polysaccharide in the protozoan parasite Toxoplasma gondii argues for a red alga ancestry[J]. Journal of Molecular Evolution, 2005, 60(2): 257-267
    [17] Meng J, Rosell K G, Srivastava L M. Chemical characterization of floridosides from Porphyra perforata[J]. Carbohydrate Research, 1987, 161(2): 171-180
    [18] 陈昌生, 纪德华, 谢潮添, 徐燕, 梁艳, 郑永健, 史修周, 王凤霞, 赵玲敏. 坛紫菜耐高温品系选育及经济性状的初步研究[J]. 海洋学报, 2008, 30(5): 100-106
    [19] Yang R, Liu W, Zhang X L, Shen M L, Sun X, Chen H M. Sequences of Mn-sod gene from Pyropia haitanensis (Bangiales, Rhodophyta) and its expression under heat shock[J]. Botanica Marina, 2013,56(3): 249-259
    [20] 钱飞箭. 坛紫菜受高温和干出胁迫的机理及脂代谢关键基因的研究[D]. 宁波: 宁波大学, 2014
    [21] Blouin N A, Brodie J A, Grossman A C, Xu P, Brawley S H. Porphyra:a marine crop shaped by stress[J]. Trends in Plant Science, 2011, 16(1): 29-37
    [22] Song D, Chen J, Luo Q, Mou T, Yang R, Chen H, He S, Yan X. Determination of floridoside and isofloridoside in red algae by high-performance liquid chromatography-tandem mass spectrometry[J].Analytical Letters, 2014, 47(14): 2307-2316
    [23] Ochsenkuhn M A, R?thig T, D′Angelo C, Wiedenmann J, Voolstra C R. The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions[J]. Science Advances, 2017, 3(8): e1602047
    [24] Hagemann M. Coping with high and variable salinity:molecular aspects of aompatible solute accumulation[J]. 2016, 6(3): 359-372
    [25] Hagemann M, Pade N. Heterosides-compatible solutes occurring in prokaryotic and eukaryotic phototrophs[J]. Plant Biology, 2015, 17(5): 927-934
    [26] Martinez-Garcia M, Maarel M. Floridoside production by the red microalga Galdieria sulphuraria under different conditions of growth and osmotic stress[J]. Amb Express, 2016, 6(1): 71-78
    [27] Wang W, Lin Y, Teng F, Ji D, Xu Y, Chen C, Xie C. Comparative transcriptome analysis between heat-tolerant and sensitive Pyropia haitanensis, strains in response to high temperature stress[J]. Algal Research, 2018, 29: 104-112
    [28] Wang W, Teng F, Lin Y, Ji D, Xu Y, Chen C, Xie C. Transcriptomic study to understand thermal adaptation in a high temperature-tolerant strain of Pyropia haitanensis[J]. PLoS One, 2018, 13(4): e0195842
    [29] Karsten U. Seasonal variation in heteroside concentrations of field-collected Porphyra species(Rhodophyta)from different biogeographic regions[J]. New Phytologist, 1999, 143(3): 561-571
    [30] Takashi M, Natsumi M, Naoki S. Activation of oxidative carbon metabolism by nutritional enrichment by photosynthesis and exogenous organic compounds in the red alga Cyanidioschyzon merolae:evidence for heterotrophic growth[J]. Springerplus, 2015, 4(1): 559-580
    [31] Li S Y, Shabtai Y, Shoshana A M. Floridoside as a carbon precursor for the synthesis of cell-wall polysaccharide in the red microalga Porphyridium sp.(Rhodophyta)[J]. Journal of Phycology, 2002, 38(5): 931-938
    [32] Qian F, Luo Q, Yang R, Zhu Z, Chen H, Yan X. The littoral red alga Pyropia haitanensis, uses rapid accumulation of floridoside as the desiccation acclimation strategy[J]. Journal of Applied Phycology, 2015, 27(1): 621-632
    [33] Tang X, Fei X. The relationship between light temperature and growth development of haitanensis conchocelis[J]. Oceanology and Limnology,1997, 28(5): 475-482
    [34] Zhang Y, Yan X. Observation on tetrad development and formation of sex phenotype of Pyropia haitanensis blades in natural conditions[J]. Journal of Fisheries of China, 2013, 37(6): 871-883
    [35] 颜泽伟. 坛紫菜自由丝状体工程化育苗技术优化及新应用研究[D]. 汕头: 汕头大学, 2015
    [36] 林汝榕, 邢炳鹏, 柯秀蓉, 蔡文旋. 坛紫菜(Porphyra haitanensis)丝状藻体生长增殖的优化调控培养条件研究[J]. 应用海洋学学报, 2014(2): 275-283
    [37] 王娟, 戴继勋, 张义听, 杨堃峰, 赵瑞祯. 紫菜的生殖与生活史研究进展[J]. 中国水产科学, 2006, 13(2): 322-327
    [38] 丁洪昌, 严兴洪. 坛紫菜杂交重组品系的选育与特性分析[J]. 水产学报, 2015, 39(9): 1359-1367
    [39] 李家富, 张涛, 陆勤勤, 朱建一, 沈宗根, 刘兆普, 王长海. 坛紫菜叶状体营养细胞与生殖细胞叶绿素荧光特性比较[J]. 海洋科学, 2013, 37(3): 82-86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700