氮掺杂石墨烯/多孔碳复合材料的制备及其氧还原催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis of N-doped graphene/porous carbon composite and its electrocatalytic performance on oxygen reduction reaction
  • 作者:贺新福 ; 龙雪颖 ; 吴红菊 ; 张凯博 ; 周均 ; 李可可 ; 张亚婷 ; 邱介山
  • 英文作者:HE Xinfu;LONG Xueying;WU Hongju;ZHANG Kaibo;ZHOU Jun;LI Keke;ZHANG Yating;QIU Jieshan;School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology;Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources;School of Chemical Engineering, Dalian University of Technology;School of Chemical Engineering, Beijing University of Chemical Technology;
  • 关键词:氧还原反应 ; 石墨烯 ; 纳米材料 ; 多孔碳 ; 电化学
  • 英文关键词:oxygen reduction reaction;;graphene;;nanomaterials;;porous carbon;;electrochemistry
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:西安科技大学化学与化工学院;国土资源部煤炭资源勘查与综合利用重点实验室;大连理工大学化工学院;北京化工大学化学工程学院;
  • 出版日期:2019-03-22 10:19
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金项目(U1703251,U1810113);; 陕西省重点研发计划项目(2017ZDCXL-GY-10-01-02)
  • 语种:中文;
  • 页:HGSZ201906031
  • 页数:8
  • CN:06
  • ISSN:11-1946/TQ
  • 分类号:290-297
摘要
采用简单、无模板的方法制备了氮掺杂多孔石墨烯/碳复合材料(NPGC)。采用SEM、XRD、Raman、XPS等分析手段对NPGC的形貌、组成以及结构进行了表征,利用旋转圆盘电极技术测试了其电催化氧还原反应(ORR)活性。结果表明,葡萄糖在水热后生成的碳与石墨烯成功复合,并在950℃炭化、活化后形成了相互渗透、结构良好的三维片状多孔网络结构;其氮含量高达9.47%。NPGC作为一种高效的非金属ORR电催化剂,在碱性溶液中具有较高的起始电位[0.87 V(vs RHE)]和较大的极限电流密度(4.7 mA?cm~(-2)),以及其ORR平均转移电子数为3.8。与商业Pt/C催化剂相比,NPGC具有较强的耐甲醇性和长期耐久性,且制备成本较低,具有广阔的应用前景。
        Nitrogen-doped porous graphene/carbon composites(NPGC) were prepared by a simple and template free method. Its morphology, composition and structure were characterized by SEM, XRD, Raman and XPS. The electrocatalytic performance of NPGC on oxygen reduction reaction(ORR) was measured by a rotating disk electrode. The results showed that porous carbon generated by hydrothermal treatment of glucose was successfully compounded with graphene. After carbonization and activation at 950℃, a three-dimensional lamellar porous network structure with good permeability and structure was formed. The N content of NPGC is as high as 9.47%.NPGC showed relatively high initial potential [0.87 V(vs RHE)] and limiting current density(4.7 mA?cm~(-2)) for ORR in KOH solution, and the average number of ORR transferred electrons was 3.8. Compared with commercial Pt/C electrocatalyst, NPGC showed high methanol tolerance and long-term durability, and had the advantage of low preparation cost, which has broad application prospects in industry.
引文
[1] Wu G, More K L, Johnston C M, et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline,iron, and cobalt[J]. Science, 2011, 332(22):443-447.
    [2] Debe, Mark K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7):43-51.
    [3] Bu L Z, Guo S J, Zhang X, et al. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis[J]. Nat. Commun., 2016, 29(7):11850.
    [4]金燕仙,施梅勤,刘委明,等. Pt/WC-CNTs催化剂的制备及其对氧还原的电催化性能[J].化工学报, 2014, 65(10):4015-4024.Jin Y X, Shi M Q, Liu W M, et al. Pt/WC-CNTs electrocatalyst for oxygen reduction reaction[J]. CIESC Journal, 2014, 65(10):4015-4024.
    [5] Zhang C H, Sha J W, Fei H L, et al. Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium[J]. ACS Nano, 2017,(11):6930-6941.
    [6] Sui Z Y, Li X, Sun Z Y, et al. Nitrogen-doped and nanostructured carbons with high surface area for enhanced oxygen reduction reaction[J]. Carbon, 126:111-118.
    [7] Dai L M, Xue Y H, Qu L T, et al. Metal-free catalysts for oxygen reduction reaction[J]. Chem. Rev., 2015, 115(11):4823-4892.
    [8] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
    [9]翁程杰,史叶勋,何大方,等.水热法制备还原氧化石墨烯及其导电性调控[J].化工学报, 2018, 69(7):3263-3269.Weng C J, Shi Y X, He D F, et al. Hydrothermal synthesis of reduced graphene oxide with tunable conductivity[J]. CIESC Journal, 2018, 69(7):3263-3269.
    [10] Bonaccorso F, Colombo L, Yu G H, et al. Graphene, related twodimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217):1246501.
    [11]周宇,王宇新.杂原子掺杂碳基氧还原反应电催化剂研究进展[J].化工学报, 2017, 68(2):519-534.Zhou Y, Wang Y X. Recent progress on electrocatalysts towards oxygen reduction reaction based on heteroatoms-doped carbon[J].CIESC Journal, 2017, 68(2):519-534.
    [12] Reda M, Hansen H A, Vegge T. DFT study of stabilization effects on N-doped graphene for ORR catalysis[J]. Catalysis Today,2018, 312(15):118-125.
    [13] Inagakia M, Toyoda M, Soneda B, et al. Nitrogen-doped carbon materials[J]. Carbon, 2018, 132:104-140.
    [14] Yang G H, Li X, Wang Y Y, et al. Three-dimensional interconnected network few-layered MoS2/N, S co-doped graphene as anodes for enhanced reversible lithium and sodium storage[J]. Electrochimica Acta, 2019, 4686(18):47-59.
    [15] Rahsepar M, Nobakht M R, Kim H, et al. Facile enhancement of the active catalytic sites of N-doped graphene as a high performance metal-free electrocatalyst for oxygen reduction reaction[J]. Applied Surface Science, 2018, 447(31):182-190.
    [16] Gonen S, Elbaz L. Metal organic frameworks as catalysts for oxygen reduction[J]. Current Opinion in Electrochemistry, 2018, 9:179-188.
    [17] Liu A R, Ma M X, Zhang X Q, et al. A biomass derived nitrogen doped carbon fibers as efficient catalysts for the oxygen reduction reaction[J]. Journal of Electroanalytical Chemistry, 2018, 824(1):60-66.
    [18] Travlou N A, Bandosz T J. N-doped polymeric resin-derived porous carbons as efficient ammonia removal and detection media[J]. Carbon, 2017, 117:228-239.
    [19] Chen Z L, Wu R B, Liu Y. Ultrafine Co nanoparticles encapsulated in carbon nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction[J].Adv. Mater., 2018, 30(30):1-10.
    [20] Jiang S, Ithisuphalap K, Zeng X R, et al. 3D porous cellular NiCoO2/graphene network as a durable bifunctional electrocatalyst for oxygen evolution and reduction reactions[J]. Journal of Power Sources, 2018, 399(30):66-75.
    [21] Zhang D, Yao Y C, Liang F, et al. Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber[J]. Carbon, 2019, 142:278-284.
    [22] Kim S, Song Y J, Heller M. Seamless aqueous arc discharge process for producing graphitic carbon nanostructures[J]. Carbon,2018, 120:83-88.
    [23] Huang Z, Pan H Y, Yang W J, et al. In Situ Self-Template Synthesis of Fe-N-doped double-shelled hollow carbon microspheres for oxygen reduction reaction[J]. ACS Nano, 2018,12(1):208-216.
    [24] Zhu Y W, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science,2011, 332(6037):1537-1541.
    [25] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006,97(18):187401.
    [26] Huang X H, Yin X L, Yu X Q, et al. Preparation of nitrogendoped carbon materials based on polyaniline fiber and their oxygen reduction properties[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 539(20):163-170.
    [27] Kim H, Lee K, Woo S, et al. On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons[J]. Phys. Chem., 2011, 13(39):17505-17510.
    [28] Wu, Z Y, Xu X X, Hu B C, et al. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis[J]. Angew. Chem., 2015, 127:8297-8301.
    [29] Díaz-Duran A K, Roncaroli F. MOF derived mesoporous nitrogen doped carbons with high activity towards oxygen reduction[J].Electrochim. Acta, 2017, 251(10):638-650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700