卫星重力估计陆地水和冰川对全球海平面变化的贡献
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Land water and glaciers contributions to global sea level change from satellite gravity measurements
  • 作者:冯贵平 ; 宋清涛 ; 蒋兴伟 ; 常亮
  • 英文作者:Feng Guiping;Song Qingtao;Jiang Xingwei;Chang Liang;National Satellite Ocean Application Service;Key Laboratory of Ocean Space Remote Sensing and Application,State Oceanic Administration;Center for Earth System Science, Tsinghua University;Shanghai Ocean University College of Marine Sciences;
  • 关键词:GRACE ; 海平面变化 ; 冰川融化 ; 海水质量变化
  • 英文关键词:GRACE;;sea level change;;ice melting;;ocean mass variations
  • 中文刊名:SEAC
  • 机构:国家卫星海洋应用中心;国家海洋局空间海洋遥感与应用研究重点实验室;清华大学地球系统科学中心;上海海洋大学海洋科学学院;
  • 出版日期:2018-11-15
  • 出版单位:海洋学报
  • 年:2018
  • 期:v.40
  • 基金:国家重点研发计划(2018YFC1407206);; 国家自然科学基金项目(41276019,41506211);; 上海海洋大学科技发展基金(A2-0203-00-100228)
  • 语种:中文;
  • 页:SEAC201811009
  • 页数:11
  • CN:11
  • ISSN:11-2055/P
  • 分类号:87-97
摘要
重力场恢复与气候试验(GRACE)卫星为高分辨率地监测全球海洋质量变化提供了一种新的手段。利用2003年1月至2014年12月Level-2 RL05的GRACE产品,进行去相关误差滤波、高斯滤波和海洋-陆地信号泄漏改正后,得到了全球陆地和海水质量变化,并分析了陆地水和冰川的质量变化对海平面长期变化的贡献。研究表明,全球陆地水和冰川的质量变化对海平面的贡献约为(2.09±0.54)mm/a,与卫星测高扣除海洋温盐数据比热容变化得到的海水质量长期变化(2.07±0.62)mm/a有着很好的一致性,其中全球陆地水储量对全球质量项海平面变化的贡献为(0.15±0.25)mm/a,南极冰盖对全球质量项海平面变化的贡献为(0.59±0.10)mm/a,格陵兰岛冰盖对全球质量项海平面变化的贡献为(0.72±0.12)mm/a,山地冰川对全球质量项海平面变化的贡献为(0.63±0.09)mm/a。并进一步讨论了不同分析中心GRACE重力场系数,一阶项系数和二阶项对质量项海平面变化的影响。结果表明,一阶项对质量项海平面的影响为(0.10±0.08)mm/a,二阶项对质量项海平面的影响为(0.16±0.04)mm/a,美国德克萨斯大学空间研究中心和德国地学研究中心分析结果较为一致,而美国国家航空航天局喷气推进实验室的结果则稍稍偏小。
        The Gravity Recovery and Climate Experiment(GRACE) satellite mission launched in 2002 provided an opportunity to estimate the global land and ocean water mass variations with high temporal-spatial resolution. In this paper, we use the GRACE RL05 data from January 2003 to December 2014 to estimate the ocean mass variations. We applied 500 km Gaussian smoothing, a decorrelation filtering and a forward modelling to reduce the land-ocean leakage effects. Land water and glaciers contributions to global sea level change are investigated. Results show that the long-term trend of the mass-induced sea level variations is(2.09±0.54) mm/a, which has a good agreement with the steric sea level change of(2.07±0.62) mm/a from the satellite altimetry and Argo data. The contribution of land water to sea level change is(0.15±0.25) mm/a. The glacier melting contribution to sea level rise is(0.72±0.12) mm/a in Greenland,(0.59±0.10) mm/a in Antarctica, and(0.63±0.09) mm/a for the mountain glaciers(including Alaska, Iceland, Canadian Arctic, High Mountain Asia and Patagonia). Furthermore, the impact of the GRACE gravity field coefficients from different GRACE analysis centers(CSR, JPL and GFZ), first-order coefficient and the second-order coefficient to sea level change are discussed. The impact of first-order coefficient to the mass-induced sea level variations is(0.10±0.08) mm/a, and the second-order coefficient to the mass-induced sea level variations is(0.16±0.04) mm/a. The results from CSR are consistent with GFZ results, while the JPL's results are slightly smaller.
引文
[1] Rhein M, Rintoul S R, Aoki S, et al. Observations: Ocean[M]//Stocker T F, Qin D, Plattner G-K, et al. Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press, 2013.
    [2] Bindoff N L, Willebrand J, Artale V, et al. Observations: oceanic climate change and sea level[M]//Solomon S, Qin D, Manning M, et al. Climate Change 2007: The Physical Science Basis, Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007: 385-428.
    [3] Tapley B D, Bettadpur S, Ries J C, et al. GRACE measurements of mass variability in the Earth system[J]. Science, 2004, 305(5683): 503-505.
    [4] Jin S G, Hassan A A, Feng G P. Assessment of terrestrial water contributions to polar motion from GRACE and hydrological models[J]. Journal of Geodynamics, 2012, 62: 40-48.
    [5] Jin S G, Feng G P. Large-scale variations of global groundwater from satellite gravimetry and hydrological models, 2002-2012[J]. Global and Planetary Change, 2013, 106: 20-30.
    [6] Willis J K, Chambers D P, Nerem R S. Assessing the globally averaged sea level budget on seasonal to interannual timescales[J]. Journal of Geophysical Research, 2008, 113(C6): C06015.
    [7] Chen J L, Wilson C R, Blankenship D D, et al. Antarctic mass rates from GRACE[J]. Geophysical Research Letters, 2006, 33(11): L11502.
    [8] King M A, Bingham R J, Moore R, et al. Lower satellite-gravimetry estimates of Antarctic sea-level contribution[J]. Nature, 2012, 491(7425): 586-589.
    [9] Matsuo K, Chao B F, Otsubo T, et al. Accelerated ice mass depletion revealed by low-degree gravity field from satellite laser ranging: Greenland, 1991-2011[J]. Geophysical Research Letters, 2013, 40(17): 4662-4667.
    [10] Chambers D P, Wahr J, Tamisiea M E, et al. Ocean mass from GRACE and glacial isostatic adjustment[J]. Journal of Geophysical Research, 2010, 115(B11): B11415.
    [11] Geruo A, Wahr J, Zhong S J. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada[J]. Geophysical Journal International, 2013, 192(2): 557-572.
    [12] Wahr J, Molenaar M, Bryan F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30205-30229.
    [13] Han D Z, Wahr J. The viscoelastic relaxation of a realistically stratified Earth, and a further analysis of postglacial rebound[J]. Geophysical Journal International, 1995, 120(2): 287-311.
    [14] Bettadpur S. Level-2 gravity field product user handbook, GRACE 327-734, CSR Publ. GR-03-01[R]. Texas: University of Texas at Austin, 2007: 19.
    [15] Swenson S, Chambers D, Wahr J. Estimating geocenter variations from a combination of GRACE and ocean model output[J]. Journal of Geophysical Research, 2008, 113(B8): B08410.
    [16] Cheng M K, Tapley B D. Variations in the Earth’s oblateness during the past 28 years[J]. Journal of Geophysical Research, 2004, 109(B9): B09402.
    [17] Jekeli C. Alternative methods to smooth the Earth’s gravity field, Rep. 327[R]. Columbus: Ohio State University, 1981.
    [18] Swenson S C, Wahr J. Post-processing removal of correlated errors in GRACE data[J]. Geophysical Research Letters, 2006, 33(8): L08402.
    [19] Ramillien G, Bouhours S, Lombard A, et al. Land water storage contribution to sea level from GRACE geoid data over 2003-2006[J]. Global and Planetary Change, 2008, 60(3/4): 381-392.
    [20] Llovel W, Becker M, Cazenave A, et al. Global land water storage change from GRACE over 2002-2009: inference on sea level[J]. Comptes Rendus Geoscience, 2010, 342(3): 179-188.
    [21] Riva R E M, Bamber J L, Lavallée D A, et al. Sea-level fingerprint of continental water and ice mass change from GRACE[J]. Geophysical Research Letters, 2010, 37(19): L19605.
    [22] Cazenave A, Chen J L. Time-variable gravity from space and present-day mass redistribution in the Earth system[J]. Earth and Planetary Science Letters, 2010, 298(3/4): 263-274.
    [23] Lemke P, Ren J, Alley R B, et al. Observations: changes in snow, ice and frozen ground[M]//Solomon S, Qin D, Manning M, et al. Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.
    [24] Ducet N, Le Traon P Y, Reverdin G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2[J]. Journal of Geophysical Research, 2000, 105(C8): 19477-19498.
    [25] Ishii M, Kimoto M, Sakamoto K, et al. Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses[J]. Journal of Oceanography, 2006, 62(2): 155-170.
    [26] Paulson A, Zhong S J, Wahr J. Inference of mantle viscosity from GRACE and relative sea level data[J]. Geophysical Journal International, 2007, 171(2): 497-508.
    [27] Peltier W R. Closure of the budget of global sea level rise over the GRACE era: the importance and magnitudes of the required corrections for global glacial isostatic adjustment[J]. Quaternary Science Reviews, 2009, 28(17/18): 1658-1674.
    [28] Chambers D P, Wahr J, Tamisiea M E, et al. Reply to comment by W. R. Peltier et al. on “Ocean mass from GRACE and glacial isostatic adjustment”[J]. Journal of Geophysical Research, 2012, 117(B11): B11404.
    [29] Peltier W R, Drummond R, Roy K. Comment on “Ocean mass from GRACE and glacial isostatic adjustment” by D. P. Chambers et al[J]. Journal of Geophysical Research, 2012, 117(B11): B11403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700