砂抛柔性加工单元中砂带磨损补偿策略研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Wear compensation strategy of sand belt in grinding flexible manufacturing unit
  • 作者:成楚楚 ; 傅高升 ; 陈鸿玲 ; 宋莉莉 ; 雷浩浩
  • 英文作者:CHENG Chu-chu;FU Gao-sheng;CHENG Hong-ling;SONG Li-li;LEI Hao-hao;Department of Mechanical and Electrical Engineering,Ningde Vocational and Technical College;School of Mechanical Engineering and Automation,Fuzhou University;
  • 关键词:工业机器人 ; 磨抛 ; 砂带磨损 ; 补偿策略
  • 英文关键词:industrial robot;;grinding;;belt wear;;compensation strategy
  • 中文刊名:JDGC
  • 英文刊名:Journal of Mechanical & Electrical Engineering
  • 机构:宁德职业技术学院机电工程系;福州大学机械工程及自动化学院;
  • 出版日期:2019-01-20 16:03
  • 出版单位:机电工程
  • 年:2019
  • 期:v.36;No.287
  • 基金:国家高技术研究发展计划(863计划)资助项目(2013AA041006);; 福建省科技重大专项资助项目(2012HZ0006-2);; 福建省教育厅中青年教师教育科研项目(JAT171133);; 宁德市科学技术计划项目(2017-137-21)
  • 语种:中文;
  • 页:JDGC201901005
  • 页数:5
  • CN:01
  • ISSN:33-1088/TH
  • 分类号:24-28
摘要
针对工业机器人砂抛柔性加工单元中,砂带因磨损导致磨削效率降低,加工一致性降低等问题,以铜合金水龙头作为磨抛对象,对其磨抛过程中的砂带磨损补偿策略进行了分析与试验。提出了基于提高砂带速度的补偿策略及其机制,通过公式推导得出了应当提高的砂带速度公式,该策略克服了传统的线性提速补偿策略与砂带非线性磨损之间的矛盾;并通过试验验证了该补偿策略的可行性。研究结果表明:在传统线性提速方法下,当加工到第100个工件时,其工件磨削量为10. 67 g;加工第101个工件时,采用非线性提速补偿策略将砂带速度从15. 99 m/s提高到16. 83 m/s后,第101个工件的磨削量提高到11. 02 g,接近标准磨削量,表明该非线性提速补偿策略是可行的。
        Aiming at the problem of the reduction of grinding quantity due to abrasive wear and maintaining consistency of grinding workpiece in flexible manufacturing unit of sand belt polishing by industrial robot,the wear compensation strategy of sand belt in the process of polishing was analyzed and tested,taking copper alloy tap workpiece as the grinding objects. The compensation strategy and mechanism based on improving the speed of sand belt were put forward,which overcomed the contradiction between the traditional linearly-increasing-speed-based method and the nonlinear trend of belt wear. The acceleration velocity formula of sand belt was also derived. The results indicated that the grinding quantity of the 100 th workpiece is 10. 67 g,using the linearly-increasing-speed-based compensation method. The grinding quantity of the 101 th workpiece increased to 11. 02 g which is close to the standard grinding quantity,when the belt speed is nonlinearly increased from 15. 99 m/s to 16. 83 m/s,showing that the nonlinear acceleration compensation strategy is feasible.
引文
[1]刘克.工业机器人自动磨抛系统[J].福建农机,2010,(4):39-41.
    [2]林少丹,傅高升.基于工业机器人的自动磨抛系统柔性加工系统设计[J].成都信息工程学院学报,2012,27(5):462-465.
    [3]PAN Z,ZHANG H.Robotic machining from programming to process control:a complete solution by force control[C].World Congress on Intelligent Control and Automation.New York:IEEE,2008:400-409.
    [4]陈天炎,傅高升.工业机器人磨抛柔性加工系统研究[J].闽江学院学报,2014,(5):22-27.
    [5]成楚楚,傅高升,陈鸿玲,等.砂带磨削参数对工业机器人砂抛工件磨削量的影响试验[J].制造业自动化,2017,39(11):4-10.
    [6]李向东.金刚石砂轮磨削参数对陶瓷加工表面粗糙度影响的研究[D].天津:天津大学机械工程学院,2004.
    [7]黄云,黄智.现代砂带磨削技术及工程应用[M].重庆:重庆大学出版社,2009.
    [8]林少丹.工业机器人自动磨抛系统的离线仿真研究[J].长江大学学报:自科版,2014,11(22):71-74.
    [9]CHONG J W S,ONG S K,NEE A Y C,et al.Robot programming using augmented reality:An interactive method for planning collision Vfree paths[J].Robotics and Computer Integrated Manufacturing,2008,25(3):689-701.
    [10]MASSA D,CALLEGARI M,CRISTALLI C.Manual guidance for industrial robot programming[J].Industrial Robot,2015,42(5):457-465.
    [11]马宇箭,唐小琦,卢少武.砂带磨削系统摩擦力补偿控制技术研究[J].润滑与密封,2010(7):68-70.
    [12]林少丹,傅高升,李俊达.磨抛离线编程中修正砂带位姿及加工姿态[J].武汉工程大学学报,2015,3(9):50-56.
    [13]LIN Y,CHEN T,FU G,et al.Relative pose estimation from points by Kalman filters[C].IEEE International Conference on Robotics and Biomimetics,New York:IEEE,2016.
    [14]成楚楚.工业机器人砂抛柔性加工单元磨削参数识别及其补偿策略[D].福州:福州大学机械工程及自动化学院,2016.
    [15]SONG Y,LIANG W,YANG Y.A method for grinding removal control of a robot belt grinding system[J].Journal of Intelligent Manufacturing,2012,23(5):1903-1913.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700