表面完整性对FGH96粉末合金高温低循环疲劳性能的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Surface Integrity on High-temperature Low-cycle Fatigue of FGH96 Powder Metallurgy Superalloy
  • 作者:王欣 ; 陈星 ; 王晓峰 ; 宋颖刚 ; 汤智慧 ; 邹金文
  • 英文作者:Wang Xin;Chen Xing;Wang Xiaofeng;Song Yinggang;Tang Zhihui;Zou Jinwen;AECC Beijing Institute of Aeronautical Materials;Aviation Key Laboratory of Advanced Corrosion and Protection on Aviation Materials;National Key Laboratory of Advanced High Temperature Structural Materials;
  • 关键词:表面完整性 ; 低循环疲劳 ; 粉末合金 ; 喷丸
  • 英文关键词:surface integrity;;low-cycle fatigue;;powder metallurgy superalloy;;shot peening
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:中国航发北京航空材料研究院;航空材料先进腐蚀与防护航空重点实验室;先进高温结构材料国防科技重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.390
  • 基金:航空基金(2015ZF21017);; 中航工业技术创新基金(2013E62137R)
  • 语种:中文;
  • 页:COSE201901039
  • 页数:10
  • CN:01
  • ISSN:61-1154/TG
  • 分类号:273-282
摘要
采用陶瓷弹丸和铸钢丸+陶瓷丸为介质对FGH96合金车削表面进行喷丸强化,引入3种表面完整性状态。研究了一次喷丸、二次喷丸和车削状态下表面形貌、残余应力场和高温低循环疲劳寿命。结果表明:二次喷丸强化在消除车削刀痕和表面平均粗糙度增大的同时,引入了底部圆滑的弹坑,二次喷丸后Kurtosis值趋于3,但强度较小的一次喷丸仅能够部分消除刀痕;同时,一次喷丸和二次喷丸后,表面残余压应力由车削的-446 MPa,提高到-1000~-1100 MPa,二次喷丸后残余压应力场深度由车削的100μm提高到250μm,一次喷丸残余压应力场深度与车削状态相当。在二次喷丸良好的表面完整性作用下,在650℃,ε_t=1.2%的试验条件下,相比于车削状态,二次喷丸后疲劳寿命提高108%;相比之下,一次喷丸提高21%;喷丸后疲劳寿命分散度减小。经过断口宏微观观察和反推分析说明,3种表面完整性状态的疲劳扩展寿命很接近,造成疲劳寿命差别的主要原因是裂纹萌生差别,二次喷丸的裂纹萌生寿命分别是一次喷丸的221%,以及车削状态的216%。利用工艺手段优化表面完整性是提高FGH96合金表面完整性和低循环疲劳寿命的关键。
        Ceramic shot and ceramic shot+cast-iron shot were employed to peen the turning surface of FGH96 powder metallurgysuperalloy to induce 3 surface integrity statues. Surface topography, residual stress profile and high-temperature low-cycle fatigueperformance were investigated of single shot peening(SSP), double shot peening(DSP) and turning statues. The results show that DSPremoves turning marks, increases the average roughness Ra, and induces the crater with smooth bottom, which makes the Kurtosisparameter approach 3. Moreover as contrast, SSP with low intensity could only partially eliminate marks. Meanwhile, surface compressiveresidual stress values are from –1000 MPa to –1100 MPa by SSP and DSP compared with –446 MPa by turning; furthermore, the depth ofDSP residual stress profile is 250 μm from 100 μm of turning. By the effect of perfect DSP surface integrity statue, fatigue cycles increaseto 108% compared with turning, and the SSP edges up only 21% in the fatigue condition of 650 °C/ε_t=1.2%. The fatigue life dispersiondecreases after peening. The results of macro/microscopic observation and analysis show the fatigue propagation lives are close amongthree surface integrity statues while the fatigue initiation lives vary greatly. The initiation life of DSP is 221% of SSP and 216% of turning.It is important and necessary to optimize the shot peening method for surface integrity promotion and high temperature low-cycle fatigueperformance improvement.
引文
[1]Meng Lingyong(孟令勇),Gao Haihong(高海红),Zheng Tianhui(郑天慧)et al.Gas Turbine Experiment and Research(燃气涡轮试验与研究)[J],2016,29(2):57
    [2]Huang Shunzhou(黄顺洲),Lu Deyu(陆德雨).Gas Turbine Experiment and Research(燃气涡轮试验与研究)[J],2001,14(1):462
    [3]Ye Peiliang(叶培梁),Liu Daxiang(刘大响).Gas Turbine Experiment and Research(燃气涡轮试验与研究)[J],2001,14(1):38
    [4]Chang L,Sun W,Cui Y et al.Metallurgical&Materials Transactions A[J],2017,48A(3):1
    [5]Song Yingdong(宋迎东),Wen Weidong(温卫东),Gao Deping(高德平).Journal of Aerospace Power(航空动力学报)[J],1996(3):294
    [6]Liang Chunhua(梁春华).Aero-Engine(航空发动机)[J],2007,33(2):57
    [7]Gabb T P,Telesman J,Kantzos P T et al.Journal of Failure Analysis and Prevention[J],2007,7(1):56
    [8]Liu Chengli(刘成立),Lv Zhenzhou(吕震宙),Xu Youliang(徐有良).Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2006,35(2):232
    [9]Liu Xingling(刘新灵),Tao Chunhu(陶春虎).Failure Analysis and Prevention(失效分析与预防)[J],2011,6(2):124
    [10]Liu Liyu(刘丽玉),Tao Chunhu(陶春虎).Materials for Mechanical Engineering(机械工程材料)[J],2014,38(8):108
    [11]Guo Yong(郭勇),Qi Ye(齐野),Li Wei(李伟)et al.Failure Analysis and Prevention(失效分析与预防)[J],2008,3(3):37
    [12]Feng Yinli(冯引利),Wu Changbo(吴长波),Gao Weiqiang(郜伟强)et al.Journal of Aerospace Power(航空动力学报)[J],2012,27(3):628
    [13]Liu Chunjiang(刘春江),Liu Xinling(刘新灵),Zhao Kai(赵凯).4th International Conference on Advances in Materials and Manufacturing Processes(第四届材料与制造工艺研究进展国际学术会议)[C].Kunming:Transaction Technical Publications,2013:250
    [14]Maier G,Riedel H,Somsen C.International Journal of Fatigue[J],2013,55(5):126
    [15]Stinville J C,Lenthe W C,Miao J et al.Acta Materialia[J],2016,103:461
    [16]Brien V,Décamps B.Materials Science&Engineering A[J],2001,316(1-2):18
    [17]Zhang Shichao(张仕朝),Yu Huichen(于慧臣),Li Ying(李影).Journal of Aeronautical Materials(航空材料学报)[J],2013,33(1):100
    [18]Huang Qi(黄奇),Ren Jingxin(任敬心),Zhang Juncheng(张钧澄).Acta Aeronautica Et Astronautica Sinica(航空学报)[J],1991,12(10):528
    [19]Sulak I,Obrtlik K,Celko L Key Engineering Materials[J],2015,665:73
    [20]Sahu J K,Gupta R K,Swaminathan J et al.International Journal of Fatigue[J],2013,51(2):68
    [21]Yang Jian(杨健),Liu Guoliang(刘国良),Wei Lei(魏磊)et al.Journal of Aeronautical Materials(航空材料学报)[J],2014,34(1):86
    [22]Lin Tao(林涛),He Yuhuai(何玉怀).Physical Testing and Chemical Analysis Part A:Physical Testing(理化检验:物理分册)[J],2011,47(11):697
    [23]Zhang Haifeng(张海风),Shi Huiji(施惠基).Journal of Aeronautical Materials(航空材料学报)[J],2006,26(1):71
    [24]Altenberger I,Nalla R K,Sano Y et al.International Journal of Fatigue[J],2012,44:292
    [25]Soady K A,Mellor B G,Shackleton J et al.Materials Science&Engineering A[J],2011,528(29-30):8579
    [26]Sahoo B,Satpathy R K,Prasad K et al.Procedia Engineering[J],2013,55(12):144
    [27]Liu Chenyi(刘趁意),Wang Shuyun(王淑云),Li Fuguo(李付国)et al.China Metal Forming Equipment&Manufacturing Technology(锻压装备与制造技术)[J],2009,44(1):84
    [28]Liu Xinling(刘新灵),Zhang Zheng(张峥),Tao Chunhu(陶春虎).Quantitative Analysis of Fatigue Fracture(疲劳断口定量分析)[M].Beijing:National Defence Industry Press,2010
    [29]Wang Renzhi(王仁智).Physical Testing and Chemical Analysis Part A:Physical Testing(理化检测:物理分册)[J],2007,43(10):535
    [30]Gao Yukui(高玉魁).Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2016,45(9):2347
    [31]Miya Shige(米谷茂).The Formation and Countermeasures of Residual Stress(残余应力的产生与对策)[M].Beijing:China Machine Press,1983
    [32]Sharman A R C,Hughes J I,Ridgway K.Journal of Materials Processing Tech[J],2015,216:123
    [33]Davim P.Surface Integrity in Machining[M].Germany:Springer,2010
    [34]Thomas T R.Precision Engineering[J],1981,3(2):97
    [35]Statistical Analysis Method for Fatigue Test of Materials,HB/Z 112-86[S].1986

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700