相位角对容性耦合电非对称放电特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of phase angle on plasma characteristics in electrically asymmetric capacitive discharge
  • 作者:胡艳婷 ; 张钰如 ; 宋远红 ; 王友年
  • 英文作者:Hu Yan-Ting;Zhang Yu-Ru;Song Yuan-Hong;Wang You-Nian;Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams (Ministry of Education,School of Physics,Dalian University of Technology;
  • 关键词:容性耦合等离子体 ; 流体模拟 ; 电非对称效应 ; 径向均匀性
  • 英文关键词:capacitively coupled plasmas;;fluid simulation;;electrical asymmetry effect;;the plasma radial uniformity
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:大连理工大学物理学院三束材料改性教育部重点实验室;
  • 出版日期:2018-11-05 17:10
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:国家自然科学基金(批准号:11405019,11675036,11335004);; 中国博士后科学基金(批准号:2015T80244)资助的课题~~
  • 语种:中文;
  • 页:WLXB201822032
  • 页数:12
  • CN:22
  • ISSN:11-1958/O4
  • 分类号:359-370
摘要
电非对称效应作为一种新兴技术,被广泛用于对离子能量和离子通量的独立调控.此外,在改善等离子体的径向均匀性方面,电非对称效应也发挥了重要作用.本文采用二维流体力学模型,并耦合麦克斯韦方程组,系统地研究了容性耦合氢等离子体中当放电由多谐波叠加驱动时,不同谐波阶数k下的电非对称效应,重点观察了相位角θ_n对自偏压以及等离子体径向均匀性的影响.模拟结果表明:在同一谐波阶数下,自偏压随相位角θ_n的变化趋势不尽相同,且当k增大(k> 3)时,自偏压随最高频相位角θ_k的变化范围逐渐减小.此外,通过调节相位角θ_n,可以改变轴向功率密度和径向功率密度的相对关系,进而实现对等离子体径向均匀性的调节.研究结果对于利用电非对称效应优化等离子体工艺过程具有一定的指导意义.
        In addition to the separate control of the ion energy and ion flux, the so-called electrical asymmetry effect(EAE) also plays an important role in improving the plasma radial uniformity. In this work, a two-dimensional fluid model combined with a full set of Maxwell equations is used to investigate the plasma characteristics in an electrically asymmetric capacitive discharge sustained by multiple consecutive harmonics. The effects of the phase angle θ_non the dc selfbias(Vdc) and on the plasma radial uniformity for different numbers of consecutive harmonics k are discussed. The simulation results indicate that the phase angles of different harmonics θ_nhave different influences on the dc self-bias Vdc. For instance, Vdc varies almost linearly with θ_1 with a period π in dual frequency discharge, and the period is 2πfor other discharge conditions. Besides, the modulation of Vdcbecomes less obvious by changing the phase angle of the highest harmonic θ_k, especially for k > 3. In addition, both the axial component of the power density Pzand the radial component of the power density Prvary with θ_n, thus the plasma radial uniformity can be adjusted. When the total power density at the radial edge becomes comparable to that in the discharge center, the plasma distribution becomes uniform. For instance, when k = 2, the plasma radial uniformity is the best at the phase angle θ_1= π/2 and θ_2= π.However, for k = 3, the best radial uniformity is observed at θ_1= 3π/2, and the nonuniformity degree α is only 0.41%under this condition. It is worth noting that at k = 8, the maximum of α is seven times higher than the minimum by changing the phase angles θ_1 and θ_2, which means that the plasma radial uniformity can be adjusted effectively.However, the modulation induced by θ_k(k > 3) becomes less obvious, especially for k = 8. Indeed, the electron density shows an edge-high profile, and the radial uniformity is always bad for all θ_8 investigated. The results obtained in this work can help us to gain an insight into the optimization the plasma process by utilizing the EAE.
引文
[1]Lieberman M A,Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing(New York:Wiley)pp1-5
    [2]Lee J K,Manuilenko O V,Babaeva N Y,Kim H C,Shon J W 2005 Plasma Sources Sci.Technol.14 89
    [3]Schulze J,Donko Z,Luggenholscher D,Czarnetzki U2009 Plasma Sources Sci.Technol.18 034011
    [4]Kawamura E,Lieberman M A,Lichtenberg A J 2006Phys.Plasmas 13 053506
    [5]Turner M M,Chabert P 2006 Phys.Rev.Lett.96 205001
    [6]Booth J P,Curley G,Maric D,Chabert P 2010 Plasma Sources Sci.Technol.19 015005
    [7]SchulzeJ,Donko Z,Schungel E,Czarnetzki U 2011Plasma Sources Sci.Technol.20 045007
    [8]Donko Z,Schulze J,Hartmann P,Korolov I,Czarnetzki U,Schungel E 2010 Appl.Phys.Lett.97 081501
    [9]Heil B G,Czarnetzki U,Brinkmann R P,Mussenbrock T 2008 J.Phys.D:Appl.Phys.41 165202
    [10]Donko Z,Schulze J,Heil B G,Czarnetzki U 2009 J.Phys.D:Appl.Phys.42 025205
    [11]Czarnetzki U,Heil B G,Schulze J,Donko Z,Mussenbrock T,Brinkmann R P 2009 J.Phys.:Conf.Ser.162012010
    [12]Schulze J,Schungel E,Czarnetzki U 2009 J.Phys.D:Appl.Phys.42 092005
    [13]Schungel E,Mohr S,Schulze J,Czarnetzki U,Kushner M J 2014 Plasma Sources Sci.Technol.23 015001
    [14]SchulzeJ,Schungel E,Czarnetzki U,Gebhardt M,Brinkmann R P,Mussenbrock T 2011 Appl.Phys.Lett.98 031501
    [15]Schulze J,Schungel E,Czarnetzki U,Donko Z 2009 J.Appl.Phys.106 063307
    [16]Schulze J,Schungel E,Donko Z,Czarnetzki U 2011Plasma Sources Sci.Technol.20 015017
    [17]Lafleur T,Delattre P A,Johnson E V,Booth J P 2012Appl.Phys.Lett.101 124104
    [18]Zhang Q Z,Jiang W,Hou L J,Wang Y N 2011 J.Appl.Phys.109 013308
    [19]Schungel E,Zhang Q Z,Iwashita S,Schulze J,Hou L J,Wang Y N,Czarnetzki U 2011 J.Phys.D:Appl.Phys.44 285205
    [20]Zhang Q Z,Zhao S X,Jiang W,Wang Y N 2012 J.Phys.D:Appl.Phys.45 305203
    [21]Zhang Y T,Zafar A,Coumou D J,Shannon S C,Kushner M J 2015 J.Phys.D:Appl.Phys.117 233302
    [22]Schungel E,Mohr S,Schulze J,Czarnetzki U 2015 Appl.Phys.Lett.106 054108
    [23]Zhang Y R,Hu Y T,Gao F,Song Y H,Wang Y N 2018Plasma Sources Sci.Technol.27 055003
    [24]Zhang Y R,Xu X,Bogaerts A,Wang Y N 2012 J.Phys.D:Appl.Phys.45 015202
    [25]Zhang Y R,Xu X,Bogaerts A,Wang Y N 2012 J.Phys.D:Appl.Phys.45 015203
    [26]Yoon J S,Song M Y,Han J M,Hwang S H,Chang WS,Lee B J,Itikawab Y 2008 J.Phys.Chem.Ref.Data37 913
    [27]Tawara H,Itikawa Y,Nishimura H,Yoshino M 1990 J.Phys.Chem.Ref.Data 19 617
    [28]Salabas A,Brinkmann R P 2005 Plasma Sources Sci.Technol.14 S53
    [29]Chen Z,Rauf S,Collins K 2010 J.Appl.Phys.108073301
    [30]Schungel E,Schulze J,Donko Z,Czarnetzki U 2011Phys.Plasmas 18 013503

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700