基于磁流变液传动的柔顺关节研究:设计,仿真和实验(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the compliant joint based on magnetorheological fluid transmission: Design, simulation and experiments
  • 作者:蔡世波 ; 韦威 ; Wan ; Weiwei ; 官军 ; 胥芳
  • 英文作者:Cai Shibo;Wei Wei;Wan Weiwei;Bao Guanjun;Xu Fang;Key Laboratory of E&M,Ministry of Education & Zhejiang Province,Zhejiang University of Technology;Osaka University;
  • 关键词:柔顺关节 ; 可变刚度 ; 磁流变液
  • 英文关键词:compliant joint;;variable stiffness;;magnetorheological fluid
  • 中文刊名:YQXB
  • 英文刊名:Chinese Journal of Scientific Instrument
  • 机构:浙江工业大学特种装备制造与先进加工技术教育部/浙江省重点实验室;大阪大学;
  • 出版日期:2019-01-15
  • 出版单位:仪器仪表学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金(51605434,51775499)项目资助
  • 语种:英文;
  • 页:YQXB201901025
  • 页数:11
  • CN:01
  • ISSN:11-2179/TH
  • 分类号:203-213
摘要
为了实现机器人的内在主动柔顺,应用磁流变液的可控特性,设计了基于磁流变液传动的多盘式柔顺关节。基于Bingham塑性模型建立了柔顺关节的扭矩传递模型,仿真分析了盘片直径、盘片间隙、励磁电流等因素对输出扭矩的影响规律,根据理论分析和仿真,得到柔顺关节的机械结构参数。设计实验平台对柔顺关节样机进行了盘片壁面形貌对动力传递性能影响、空转力矩特性、动力传动特性、静态特性、转速-输出转矩特性以及阶跃输入、阶跃负载情况下的动态响应实验研究。结果表明基于磁流变液传动的柔顺关节盘片表面粗糙度越大,所能传递的扭矩越大,磁流变传动输出稳定,且可以无级调控。
        In order to achieve the intrinsic active compliant flexibility for robots,using the controllable characteristic of magnetorheological fluid,a multi-disc compliant joint based on magnetorheological fluid transmission is proposed in this paper.The torque transmission model of the compliant joint was established based on Bingham plastic model. The effects of disc diameter,disc clearance,exciting current and other factors on the output torque were simulated and analyzed. The mechanical structure and dimensions of the compliant joint were decided according to the theoretical analysis and simulation. A test platform was designed to carry out the experiment investigation of the compliant joint prototype. The influence of the surface morphology of the discs on the power transfer performance,the idling torque characteristic,power transmission characteristic,static characteristic,rotational speed-output torque characteristic,and the dynamic responses under step-input and step load conditions were studied experimentally. The results show that the greater the surface roughness of the discs of the compliant joint based on magnetorheological fluid transmission is,the higher the torque that can be transmitted will be. The proposed compliant joint has the feature of stable transmission output and can achieve stepless regulation.
引文
[1] GHAFFARI A, HASHEMABADI S H, ASHTIANI M. A review on the simulation and modeling of magnetorheological fluids [J]. Journal of Intelligent Material Systems & Structures, 2015, 26 (8): 881- 904.
    [2] ASHTIANI M, HASHEMABADI S H, GHAFFARI A. A review on the magnetorheological fluid preparation and stabilization [J]. Journal of Magnetism and Magnetic Materials, 2015 (374): 716- 730.
    [3] WONG P L, BULLOUGH W A, FENG C, et al. Tribological performance of a magneto-rheological suspension [J]. Wear, 2001, 247 (1): 33- 40.
    [4] BULLOUGH W A, WONG P L, FENG C, et al. Fundamental boundary tribology: ESF [J]. Journal of Intelligent Materials Systems and Structures, 2003, 14 (2): 71- 78.
    [5] ZAIDI H, AMIRAT M, FRENE J, et al. Magneto tribology of ferromagnetic/ferromagnetic sliding couple [J]. Wear, 2007, 263 (7): 1518- 1526.
    [6] 刘奇, 唐龙, 张平, 等. 磁流变体材料稳定性和润滑性能研究 [J]. 功能材料, 2005, 36 (8): 1192- 1195.LIU Q, TANG L, ZHANG P. Study on stability and lubricity of magnetorheological fluid [J]. Journal of Functional Materials, 2005, 36(8): 1192- 1195.
    [7] 胡志德, 晏华, 王雪梅, 等. 稠化剂含量对磁流变脂流变行为的影响 [J]. 功能材料, 2015, 46 (2): 2105- 2108,2114.HU ZH D, YAN H, WANG X M, et al. The effect of soap content on the rheology of mineral oil-based magnetorheological grease [J]. Journal of Functional Materials, 2015, 46 (2): 2105- 2108,2114.
    [8] 王道明, 孟庆睿, 侯友夫, 等. 传动装置磁流变液瞬态温度场研究 [J]. 农业机械学报, 2013, 44 (4): 287- 292.WANG D M, MENG Q R, HOU Y F, et al. Transient temperature field of magneto-rheological fluid in transmission device [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44 (4): 287- 292.
    [9] 田祖织, 侯友夫, 王囡囡. 界面变形对磁流变传动装置传动性能的影响 [J]. 仪器仪表学报, 2013, 34 (7): 1609- 1615.TIAN Z ZH, HOU Y F, WANG N N. Influence of interface deformation on transmission properties of magnetorheological transmission device [J]. Chinese Journal of Scientific Instrument, 2013, 34 (7): 1609- 1615.
    [10] 孙书蕾, 彭雄奇, 郭早阳,等. 基于RVE方法的磁流变弹性体力学行为的预测[J]. 功能材料, 2015, 46 (4): 4128- 4132.SUN SH L, PENG X Q, GUO Z Y, et al. Prediction of magnetorheological elastomeric behavior based on RVE method [J]. Functional Materials, 2015, 46 (4): 4128- 4132.
    [11] 胡素芸, 邵斌澄, 李坤,等. 面向航天员虚拟训练的人机交互系统研制和测试[J]. 电子测量与仪器学报, 2017,31 (12): 1902- 1911.HU S Y, SHAO B CH, LI K, et al. Design and evaluation of a human-machine system for astronauts virtual training[J] Journal of Electronic Measurement and Instrumentation, 2017, 31 (12): 1902- 1911.
    [12] 武晓楠, 段元峰, 樊可清. 用于磁流变阻尼器的电流控制器[J]. 电子测量技术, 2013, 36 (5): 32- 37.WU X N, DUAN Y F, FAN K Q. Current controller for magneto-rheological dampers[J]. Electronic Measurement Technology, 2013,36 (5): 32- 37.
    [13] 叶宇浩, 廖昌荣, 孙凌逸, 等. 磁流变胶泥流变学特性测试装置研究[J]. 仪器仪表学报, 2017, 38 (9): 2170- 2176.YE Y H, LIAO CH R, SUN L Y, et al. Study on testing device for rheological properties of magneto-rheological glues[J]. Chinese Journal of Scientific Instrument. 2017, 38 (9): 2170- 2176.
    [14] KEREM K, EDWARD J P, Afzal S. Design considerations for an automotive magnetorheological brake [J]. Mechatronics, 2008, 18 (8): 434- 447.
    [15] 赵昌森. 基于磁流变液的力反馈手功能康复训练系统设计 [D]. 南京: 东南大学, 2017.ZHAO CH S. Design of hand function rehabilitation training system based on magnetorheological fluid force feedback [D]. Nanjing: School of Mechanical Engineering, Southeast University, 2017.
    [16] 王永强. 大抛光模磁流变超光滑平面抛光技术研究 [D]. 长沙: 湖南大学, 2016.WANG Y Q. Large polishing mode magneto-rheological super smooth surface polishing technology [D]. Changsha: Hunan University, 2016.
    [17] KIKUCHI T, ODA K, FURUSHO J. Leg-robot for demonstration of spastic movements of brain-injured patients with compact magnetorheological fluid clutch [J]. Advanced Robotics, 2010, 24 (5): 671- 686.
    [18] OH J S, CHOI S H, CHOI S B. Design of a 4-DOF MR haptic master for application to robot surgery: Virtual environment work [J]. Smart Materials & Structures, 2014, 23 (9): 095032.
    [19] CHOI S H, OH J S, LEE S R, et al. Torque tracking control of a haptic master featuring controllable magnetorheological fluid [C]. International Conference on Control, 2014: 581- 584.
    [20] CHEN J, LIAO W H. Design and control of a magnetorheological actuator for leg exoskeleton [C]. IEEE International Conference on Robotics & Biomimetics, 2008: 1388- 1393.
    [21] 崔广宇, 冯岩, 邹俊俊. 磁流变液振动控制阻尼器在柔性机器人中的运用 [J]. 现代制造技术与装备, 2016 (5): 59- 60.CUI G Y, FENG Y, ZOU J J. Application of magneto-rheological fluid vibration control dampers in flexible robots [J]. Modern Manufacturing Technology and Equipment, 2016 (5): 59- 60.
    [22] HAJIYAN M, MAHMUD S, BIGLARBEGIAN M, et al. A new design of magnetorheological fluid based braking system using genetic algorithm optimization [J]. International Journal of Mechanics and Materials in Design, 2016, 12 (4): 449- 462.
    [23] 高瞻, 宋爱国, 秦欢欢, 等. 蛇形磁路多片式磁流变液阻尼器设计[J]. 仪器仪表学报, 2017, 38 (4): 821- 829.GAO ZH, SONG AI G, QIN H H, et al. Design of multi-disc MRF damper with serpentine flux path[J]. Chinese Journal of Scientific Instrument, 2017, 38 (4): 821- 829.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700