独脚金内酯对干旱胁迫‘赤霞珠'葡萄幼苗生长的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of strigolactones on growth of Cabernet Sauvignon seedlings under drought stress
  • 作者:李润宇 ; 闵卓 ; 房玉林
  • 英文作者:LI Runyu;MIN Zhuo;FANG Yulin;College of Enology,Northwest A&F University;
  • 关键词:葡萄 ; 干旱胁迫 ; 独脚金内酯 ; 赤霞珠 ; 幼苗生理特性
  • 英文关键词:grape;;drought stress;;strigolactones;;Cabernet Sauvignon;;seedling physiological characteristics
  • 中文刊名:XBNY
  • 英文刊名:Journal of Northwest A & F University(Natural Science Edition)
  • 机构:西北农林科技大学葡萄酒学院;
  • 出版日期:2018-11-06 16:58
  • 出版单位:西北农林科技大学学报(自然科学版)
  • 年:2019
  • 期:v.47;No.344
  • 基金:宁夏自治区十三五重点研发项目“优质特色酿酒葡萄生产精准水肥调控研究”(2016BZ0602);; 国家现代农业(葡萄)产业技术体系建设专项(CARS-29-ZP-6)
  • 语种:中文;
  • 页:XBNY201905010
  • 页数:11
  • CN:05
  • ISSN:61-1390/S
  • 分类号:73-83
摘要
【目的】探索独脚金内酯对干旱环境下‘赤霞珠'幼苗生长的影响。【方法】以酿酒葡萄‘赤霞珠'实生苗为材料,叶面喷施0.2 mg/L独脚金内酯的人工合成类似物GR24,以喷施蒸馏水为对照,3 d后进行自然干旱处理(停止浇水),采用烘干称重法每天检测土壤相对含水量,分别在自然干旱第4 (水分适宜期)、8 (轻度胁迫期)、12(中度胁迫期)和18(重度胁迫期)天采样,研究独脚金内酯处理后干旱胁迫对葡萄幼苗生长、根系、生物量、叶绿素含量和细胞超微结构的影响。【结果】干旱胁迫过程中,与对照相比,独脚金内酯处理组‘赤霞珠'幼苗叶片变黄、萎蔫的程度均有所减轻,幼苗生长状态更好,株高和茎粗升高,地上部和地下部干鲜质量、根冠比均极显著增加;独脚金内酯处理组‘赤霞珠'幼苗根长、根系平均直径、根系表面积和根体积均极显著提高,根尖数和根分枝数增多;独脚金内酯处理组‘赤霞珠'幼苗叶片相对含水量呈降低趋势,但变化曲线较对照平缓,叶片电导率和相对水分亏缺呈上升趋势,但变化过程也较对照组平缓;随干旱胁迫时间的延长,各处理‘赤霞珠'幼苗叶绿素a、叶绿素b及总叶绿素含量均呈降低趋势,但独脚金内酯处理组幼苗叶绿素含量的降幅较对照组小。细胞超微结构观察表明,与对照相比,独脚金内酯处理组‘赤霞珠'幼苗叶肉细胞和根尖细胞结构更完整。【结论】喷施独脚金内酯对干旱胁迫下‘赤霞珠'幼苗的生长发育有促进效应。
        【Objective】 The objective of this study was to explore the effect of strigolactone on physiological characteristics of Cabernet Sauvignon seedlings under drought conditions.【Method】 Strigolactone analogues(GR24,0.2 mg/L) were foliar sprayed on leaves of Cabernet Sauvignon seedlings,and distilled water was sprayed as control.After three days,Cabernet Sauvignon seedlings were stopped watering under stimulant natural drought conditions.Soil relative water content was measured daily by drying weighing method.The physiological characteristics of grape seedlings including seedling growth characteristics,root properties,biomass,chlorophyll content,and cell ultrastructure were studied on the 4 day(suitable water content period),8 day(mild stress period),12 day(moderate water period) and 18 day(severe water period) after natural drought.【Result】 Compared to the control group, during the drought stress process,Cabernet Sauvignon seedlings in treatment group grew better.With GR24 treatment,the severity of younger leaves yellowing and wilting was lessened,and plant height and stem thickness were increased.Both plant fresh dry mass of aboveground part or underground part and the root-shoot ratio of underground part were significantly promoted.Under drought stress,root length,root average diameter and root surface area or volume of grape seedlings of treatment group increased significantly, and the numbers of root branches and tips were markedly higher than those of the control group.The relative water contents of seedling leaves of treatment group showed a slow decreasing trend compared with the control.GR24 treatment could alleviate the increase of electrical conductivities of seedling leaves and seeding relative water deficit.With increased drought stress, the contents of chlorophyll a,chlorophyll b and total chlorophyll showed decreasing trend, and the decrease was less than the control.The structure of mesophyll cells and root tip cells in treatment group was more integrated than the control.【Conclusion】 Foliar application of strigolactone could alleviate the adverse effects of drought stress on grape seedlings.
引文
[1]白云岗,张江辉,卢震林,等.极端干旱区葡萄园喷施抗旱蒸腾剂效果研究[J].北方园艺,2010(16):44-46.Bai Y G,Zhang J H,Lu Z L,et al.Effect of anti-transpirant on vineyard in the extreme arid area[J].Northern Horticulture,2010(16):44-46.
    [2]李昭楠,李唯,刘继亮,等.不同滴灌水量对干旱荒漠区酿酒葡萄光合及产量的影响[J].中国生态农业学报,2011,19(6):1324-1329.Li Z N,Li W,Liu J L,et al.Effect of drip irrigation pattern on wine grape growth,yield,photosynthesis and water use efficiency in arid desert regions[J].Chinese Journal of Eco-Agriculture,2011,19(6):1324-1329.
    [3]孙伟.调亏灌溉(RDI)和简约化叶幕管理对酿酒葡萄生长及果实品质的影响[D].陕西杨凌:西北农林科技大学,2012.Sun W.Effects of regulated deficit irrigation and simplified canopy management on the growth and fruit quality of grapevine[D].Yangling,Shaanxi:Northwest A&F University,2012.
    [4]张永福,何田方,牛燕芬,等.硝普钠对干旱胁迫下葡萄抗旱生理的影响[J].广东农业科学,2014,41(24):40-44.Zhang Y F,He T F,Niu Y F,et al.Effects of sodium nitroprusside on drought-resistance physiology in grape under drought stress[J].Guangdong Agricultural Sciences,2014,41(24):40-44.
    [5]杨阳,王恒振,王咏梅,等.喷钙对干旱胁迫下葡萄光合作用及叶绿素荧光参数的影响[J].安徽农业科学,2017,45(27):62-64,189.Yang Y,Wang H Z,Wang Y M,et al.Effects of calcium spray on photosynthesis and chlorophyll fluorescence of grape under drought stress[J].Journal of Anhui Agricultural Sciences,2017,45(27):62-64,189.
    [6]Meng J F,Xu T F,Wang Z Z,et al.The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress:antioxidant metabolites,leaf anatomy,and chloroplast morphology[J].Journal of Pineal Research,2014,57:200-212.
    [7]王智真.24-表油菜素内酯对葡萄幼苗缓解水分胁迫的生理效应[D].陕西杨凌:西北农林科技大学,2015.Wang Z Z.Ameliorative effects of 24-epibrassinolide on grape seedlings under water stress[D].Yangling,Shaanxi:Northwest A&F University,2015.
    [8]张永福,牛燕芬,彭声静,等.铝、旱双重胁迫下葡萄根系对水杨酸的生理响应[J].湖北农业科学,2015,54(2):364-369.Zhang Y F,Niu Y F,Peng S J,et al.Physiological responses of grape root to salicylic acid under stress of aluminum and drought[J].Hubei Agricultural Sciences,2015,54(2):364-369.
    [9]Umehara M,Hanada A,Yoshida S,et al.Inhibition of shoot branching by new terpenoid plant hormones[J].Nature,2008,455(7210):195-200.
    [10]Gomezroldan V,Fermas S,Brewer P B,et al.Strigolactone inhibition of shoot branching[J].Nature,2008,455(7210):189-194.
    [11]Kapulnik Y,Koltai H.Strigolactone involvement in root development,response to abiotic stress,and interactions with the biotic soil environment[J].Plant Physiology,2014,166(2):560-569.
    [12]Ruyter-Spira C,Kohlen W,Charnikhova T,et al.Physiological effects of the synthetic strigolactone analog GR24on root system architecture in Arabidopsis:another belowground role for strigolactones[J].Plant Physiology,2011,155(2):721-734.
    [13]Yamada Y,Umehara M.Possible roles of strigolactones during leaf senescence[J].Plants,2015,4:664-677.
    [14]Torres-Vera R,García J M,Pozo M J,et al.Do strigolactones contribute to plant defence[J].Molecular Plant Pathology,2014,15:211-216.
    [15]Ha C V,Leyva-González M A,Osakabe Y,et al.Positive regulatory role of strigolactone in plant responses to drought and salt stress[J].Proceedings of the National Academy of Sciences,2014,111(2):851-856.
    [16]Liu J,He H,Vitali M,et al.Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots:exploring the interaction between strigolactones and ABA under abiotic stress[J].Planta,2015,241(6):1435-1451.
    [17]Visentin I,Vitali M,Ferrero M,et al.Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato[J].New Phytologist,2016,212(4):954-963.
    [18]高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006.Gao J F.Experimental guidance of plant physiology[M].Beijing:Higher Education Press,2006.
    [19]Yoneyama K,Xie X,Kim H I,et al.How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation[J].Planta,2012,235(6):1197-1207.
    [20]Ruiz-Lozano J M,Aroca R,Zamarre1oM,et al.Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato[J].Plant Cell&Environment,2016,39(2):441-452.
    [21]Kim T H,B9hmer M,Hu H,et al.Guard cell signal transduction network:advances in understanding abscisic acid,CO2,and Ca2+signaling[J].Annual Review of Plant Biology,2010,61(1):561.
    [22]Zhang Y,LüS,Wang G.Strigolactones are common regulators in induction of stomatal closure in planta[J].Plant Signaling&Behavior,2018,13(3):1-12.
    [23]Siddiqi K S,Husen A.Plant response to strigolactones:current developments and emerging trends[J].Applied Soil E-cology,2017,120:247-253.
    [24]Yoneyama K,Xie X,Kusumoto D,et al.Nitrogen deficiency as well as phosphorus deficiency insorghum promotes the production and exudation of 5-deoxystrigol,the hostrecognition signal for arbuscular mycorrhizal fungi and root parasites[J].Planta,2007,227(1):125-132.
    [25]Arite T,Iwata H,Ohshima K M,et al.DWARF10,an RMS1/MAX4/DAD1ortholog,controls lateral bud outgrowth in rice[J].Plant Journal,2010,51(6):1019-1029.
    [26]Kapulnik Y,Delaux P M,Resnick N,et al.Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis[J].Planta,2011,233(1):209-216.
    [27]Kapulnik Y,Resnick N,Mayzlishgati E,et al.Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis[J].Journal of Experimental Botany,2011,62(8):2915-2924.
    [28]Kohlen W,Charnikhova T,Lammers M,et al.The tomato Carotenoid Cleavage Dioxygenase8(SlCCD8)regulates rhizosphere signaling,plant architecture and affects reproductive development through strigolactone biosynthesis[J].New Phytol,2012,196(2):535-547.
    [29]Agusti J,Herold S,Schwarz M,et al.Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants[J].Proc Natl Acad Sci USA,2011,108(50):20242-20247.
    [30]Sedaghat M,Tahmasebisarvestani Z,Emam Y,et al.Physiological and antioxidant responses of winter wheat cultivars to strigolactone and salicylic acid in drought[J].Plant Physiology&Biochemistry Ppb,2017,119:59-69.
    [31]陈丽,艾军,王振兴,等.干旱胁迫对葡萄生理特性及显微结构影响的研究进展[J].北方园艺,2011(6):205-209.Chen L,Ai J,Wang Z X,et al.Research progress on effect of drought stress on the physiologicai property and microstructure in grapevine[J].Northern Horticulture,2011(6):205-209.
    [32]李国栋,田曼青,沈仁芳.拟南芥独脚金内酯突变体叶绿素荧光特性分析[J].浙江农林大学学报,2017,34(1):36-41.Li G D,Tian M Q,Shen R F.Analysis of chlorophyll fluorescence parameters in leaves of stigolactone mutants of Arabidopsis thaliana[J].Journal of Zhejiang A&F University,2017,34(1):36-41.
    [33]Mayzlishgati E,Lekkala S P,Resnick N,et al.Strigolactones are positive regulators of light-harvesting genes in tomato[J].Journal of Experimental Botany,2010,61(11):3129.
    [34]Wang J,Xia H,Lin L J,et al.Exogenous abscisic acid increases resistances against abiotic stress and improve fruit quality of grape[J].The Journal of Animal&Plant Sciences,2016,26(5):1326-1333.
    [35]Wang Z Z,Zheng P,Meng J F,et al.Effect of exogenous 24-epibrassinolide on chlorophyll fluorescence,leaf surface morphology and cellular ultrastructure of grape seedlings(Vitis vinifera,L.)under water stress[J].Acta Physiologiae Plantarum,2015,37(1):1729.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700