基于流动损失权重分配的扩压叶栅弯叶片优化探究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation of Optimizing a Compressor Cascade With Curved Blade Based on the Weight Distribution of Flow Losses
  • 作者:阚晓旭 ; 王松涛 ; 罗磊 ; 苏杰先
  • 英文作者:KAN Xiao-Xu;WANG Song-Tao;LUO Lei;SU Jie-Xian;Harbin Institute of Technology,Engine Aerodynamic Research Center;
  • 关键词:矩形扩压叶栅 ; 旋涡结构 ; 流动损失 ; 权重分配 ; 叶片周向弯曲 ; 拓扑分析
  • 英文关键词:linear compressor cascade;;vortex structure;;flow losses;;weight distribution;;curved blade;;topological analysis
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:哈尔滨工业大学发动机气体动力研究中心;
  • 出版日期:2018-03-15
  • 出版单位:工程热物理学报
  • 年:2018
  • 期:v.39
  • 基金:中国博士后科学基金资助项目(No.2017M621268);; 国家自然科学基金重点项目(No.51436002,No.51706051);国家自然科学基金创新研究群体项目(No.51121004)
  • 语种:中文;
  • 页:GCRB201803007
  • 页数:9
  • CN:03
  • ISSN:11-2091/O4
  • 分类号:42-50
摘要
本文采用经过实验校核过的数值模拟方法研究了CDA叶型的矩形扩压叶栅旋涡结构与流动损失之间的权重关系,并以此为指导进行叶片周向弯曲优化设计,改善叶栅气动性能.结果表明:原始叶栅中集中脱落涡所影响区域的总压损失权重占总损失的60%,并通过对该旋涡结构所对应的分离区域的拓扑分析确定了叶片周向弯曲的弯高、积叠线控制点和弯角数值.叶片周向弯曲的作用将该分离区从角区闭式分离转变为开式分离,同时降低叶片根部负荷,改变横向和径向压力梯度分布.优化叶栅降低了集中脱落涡所占的总压损失权重41.3%,最终降低了出口截面质量流量平均的总压损失系数2.55%。基于旋涡结构的流动损失分配权重分析方法有效地提升了叶栅气动性能,大大地缩短了叶栅流场优化设计周期,据有可观的工程应用前景。
        In this paper, verified against experimental results, the numerical simulation method is used to study the weight relationship between the vortex structures and the flow losses of a linear compressor cascade with CDA profile. Then, the optimization design of curved blade is processed according to this method, in order to improve the aerodynamic performance of this cascade. The results show that the weight coefficient of Concentrated Shedding Vortex(CSV) is about 60% of the whole total pressure losses. Hence, it is determined that the height value, the position of control point of the stacking line and the angle value of the curved blade in accordance with the topological analysis of the separation region referring to this vortex structure. The effect of the curved blade transfers the separation type from corner-closed separation to open separation, meanwhile, there is reduced of the blade load around the root, which changes the distribution of cross-wise and span-wise pressure gradient. Thus, the weight coefficient of CSV of the optimization cascade is reduced less than41.3%, and the total pressure losses coefficient by mass flow averaged on the exit section is reduced more than 2.55%. it is effectively improved the aerodynamic performance of cascade with the weight distribution analysis method based on the vortex structures, which greatly reduces the design period of optimizing this cascade's flow field, and has considerable engineering application prospects.
引文
[1]周逊,韩万金.涡轮矩形叶栅中旋涡模型的进展回顾[J].航空动力学报,2001,16(3):199-204ZHOU Xun,HAN Wanjin.A Review of Vortex Model Development for Rectangular Turbine Cascades[J].Journal of Aerospace Power,2001,16(3):199-204
    [2]Wang Haiping.Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blade[R].ASME Paper 95-GT-7,1995
    [3]Kang Shun.Investigation of the Three Dimensional Flow within a Compressor Cascade with and without Tip Clearance:[D].Vrije Universiteit Brussel,1993
    [4]Herzig H Z,Hansen A G,Costello G R.A Visualization Study of Secondary Flows in Cascades[R].Technical Report Archive&Image Library,1954
    [5]Armstong N.D.The Secondary Flow in a Cascade of Turbine Blades[R].ARC&M 2979,1955
    [6]Wagner W B,Owczarek J A.An Investigation of the Corner Secondary Flows Generated in Planar Nozzles[J].Journal of Fluids Engineering,1974,96(3):234-245
    [7]Sjolander S A.The Endwall Boundary Layer in an Annular Cascade of Turbine Nozzle Guide Vanes[R].Department of Mechanical and Aeronautical Engineering,Carleton University,1975
    [8]Langston L S.Crossflows in a Turbine Cascade Passage[J].Journal of Engineering for Power,1980,102(4):866-874
    [9]Klein A.Investigation of the Entry Boundary Layer on the Secondary Flows in the Blading of Axial Turbines[R].BHRA T 1004,1966
    [10]Marchal P,Sieverding C H.Secondary Flow within Turbomachinery Blading.Secondary Flows in Turbomachines[R].AGARD CP214,1977
    [11]Moore J,Smith B L.Flow in a Turbine Cascade.Part 2:Measurement of Flow Trajectories by Ethylene Detection[R].ASME Paper No.83-GT-69,1983
    [12]Gregory-Smith D G,Graves C P.Secondary Flows and Losses in a turbine Cascade.Viscous Effects in Turbomachines[R].AGARD CP351,1983
    [13]陈忠良,郑群,姜斌,等.高负荷氦气压气机矩形叶栅流动分离特性[J].哈尔滨工程大学学报,2015(3)::343-347CHEN Zhongliang,ZHENG Qun,JIANG Bin,et al.Flow Separation Characteristics of Rectangular Cascade for a Highly-loaded Helium Compressor[J].Journal of Harbin Engineering University,2015(3):343-347
    [14]张华良,王松涛,王仲奇.冲角对压气机叶栅内二次涡的影响[J].航空动力学报,2006,21(1):150-155ZHANG Hualiang,WANG Songtao,WANG Zhongqi.Influence of Incidence on Secondary Vortex in the Compressor Cascade[J].Journal of Aerospace Power,2006,21(1):150-155
    [15]陈芳,陈懋章,蒋浩康.平面叶栅端壁流的试验研究[J].工程热物理学报,1988,9(2):125-130Chen Fang,Chen Maozhang,Jiang Haokang.An Experimental Study of End-wall Flow in a Compressor Cascade[J].Journal of Engineering Thermophysics,1988,9(2):125-130
    [16]唐燕平,陈懋章,陈芳.扩压叶栅中的旋涡运动[J].航空动力学报,1990,5(2):103-112Tang Yanping,Chen Fang,Chen Maozhang.Experimental Investigation on Vortical Type Flow in Compressor Cascades[J].Journal of Aerospace Power,1990,5(2):103-112
    [17]Lakshminarayana B,Horlock J.Tip Clearance Flow and Losses for an Isolated Compressor Blade[R].Arc R&M3316,1963
    [18]吴介之.旋涡——流体运动的肌腱[J].自然杂志,1985(7):12-16WU Jiezi.Vortex—the tendon of fluid flow[J].Chinese Journal of Nature,1985(7):12-16
    [19]张华良.采用叶片弯/掠及附面层抽吸控制扩压叶栅内涡结构的研究[D].哈尔滨:哈尔滨工业大学,2007ZHANG Hualiang.Investigation on Application of Dihedral/swept Blade and Boundary Layer Suction to Control Vortex Configurations in Compressor Cascade[D].Harbin:Harbin Institute of Technology,2007
    [20]张海灯,吴云,李应红,等.高速压气机叶栅旋涡结构及其流动损失研究[J].航空学报,2014,35(9):2438-3450ZHANG Haideng,WU Yun,LI Yinghong,et al.Investigation of Vortex Structure and Flow Loss in a High Speed Compressor Cascade.Acta Aeronautica et Astronautica Sinica,2014,35(9):2438-3450
    [21]田思,吴云,张海灯,等.基于能量耗散率的低速扩压叶栅损失研究[J].航空学报,2015,36(10):3249-3262TIAN Simeng,WU Yun,ZHANG Haideng,et al.Energy Loss in a Low-speed Compressor With Dissipation Function[J].Acta Aeronautica et Astronautica Sinica,2015,36(10):3249-3262
    [22]王松涛,羌晓青,冯国泰,等.低反动度附面层抽吸式压气机及其内部流动控制[J].工程热物理学报,2009,30(1):35-40WANG Songtao,QIANG Xiaoqing,Feng Guotai,et al.Study of Low-reaction Boundary Layer Suction Axial Compressor and It's Internal Flow Control[J].Journal of Engineering Thermophysics,2009,30(1):35-40
    [23]郭爽,陈绍文,宋宇飞,等.附面层抽吸对高负荷扩压叶栅损失的影响[J].工程热物理学报,2009,30(9):574-576GUO Shuang,CHEN Shaowen,SONG Yufei.Effects of Boundary Layer Suction on the Loss of Highly-loaded Compressor Cascade[J].Journal of Engineering Thermophysics,2009,30(9):574-576
    [24]陆华伟,张永超,刘俊,等.附面层抽吸对高负荷扩压叶栅变冲角性能影响[J].工程热物理学报,2017,38(4):726-732LU Huawei,ZHANG Yongchao,LIU Jun.Investigation of Boundary Layer Suction on Compressor Cascade Incidence[J].Journal of Engineering Thermophysics,2017,38(4):726-732
    [25]刘艳明,关朝斌,孙拓,等.合成射流激励对压气机叶栅气动性能的影响[J].工程热物理学报,2011,32(5):750-754LIU YanMing,GUAN ChaoBin,SUN Tuo.The Investigation of Aerodynamic Characteristics in Compressor Cascade with Synthetic Jet Excitation[J].Journal of Engineering Thermophysics,2011,32(5):750-754
    [26]秦勇,王若玉,宋彦萍,等.端壁合成射流对高负荷扩压叶栅损失特性的影响[J].推进技术,2017,38(9):1975-1986QIN Yong,WANG Ruoyu,SONG Yanping.Effects of Endwall Synthetic Jet on Loss Characteristics of a Highly Loaded Compressor Cascade[J].Journal of Propulsion Technology,2017,38(9):1975-1986
    [27]吴云,张海灯,于贤君,等.轴流压气机等离子体流动控制[J].工程热物理学报,2017,38(7):1396-1414WU Yun,ZHANG Haideng,YU Xianjun.Plasma Flow Control of Axial Compressor[J].Journal of Engineering Thermophysics,2017,38(7):1396-1414
    [28]Heinrich A,Tiedemann C,Peitsch D.Experimental Investigations of Secondary Flow Development Around Tandem Vanes in a 2D Linear Stator Compressor Cascade[C]//Proceedings of 11~(th)European Conference on Turbomachinery Fluid Dynamics&thermodynamics.Madrid,Spain:2015:1-13
    [29]余佳,季路成.两类非常规压气机构型负荷能力分析[J].工程热物理学报,2015,36(2):288-291YU Jia,JI Lucheng.Load Capacity Analysis on Two Types of Unconventional Compressor Configuration[J].Journal of Engineering Thermophysics,2015,36(2):288-291
    [30]钟兢军,杨凌,韩少冰.不同长度端壁翼刀对跨声速压气机叶栅二次流影响的数值研究[J].工程热物理学报,2012,33(5):765-769ZHONG Jingjun,YANG Ling,HAN Shaobing.Numerical Investigation of the Secondary Flow Control in an Annual Compressor of Transonic Cascade with Different Length Endwall Fences[J].Journal of Engineering Thermophysics,2012,33(5):765-769
    [31]钟兢军,苏杰先,王仲奇,等.叶片倾斜和弯曲对扩压叶栅出口流场的影响[J].工程热物理学报,1995,16(1):29-34ZHONG Jingjun,SU.Jiexian,WANG Zhongqi,et al.The Effects of Blade Leaning and Curving on the Outlet Flow Fields of Plane Axial Flow Compressor Cascade[J].Journal of Engineering Thermophysics,1995,16(1):29-34
    [32]杜鑫,王松涛,王仲奇,等.端弯联合弯叶片对扩压叶栅角区分离影响研究[J].工程热物理学报,2012,33(10):1687-1690DU Xin,WANG Songtao,WANG Zhongqi,et al.Effects of Endbend-Bowed Blade on Corner Separation of a Diffusion Cascade[J].Journal of Engineering Thermophysics,2012,33(10):1687-1690
    [33]DORFNER C,HERGT A,NICKE E,et al.Advanced Non-axisymmetric Endwall Contouring for Axial Compressors by Generating an Aerodynamic Separator-part I:Principal Cascade Design and Compressor Application[J].Journal of Turbomachinery,2011,133:113-120
    [34]HERGT A,DORFNER C,STEINERT W,et al.Advanced Non-axisymmetric Endwall Contouring for Axial Compressors by Generating an Aerodynamic Separatorpart II:Experimental and Numerical Cascade Investigation[J].Journal of Turbomachinery,2009,133:121-131
    [35]Smith L H,Yeh H.Sweep and dihedral effects in AxialFlow Turbomachinery[J].Journal of Basic Engineering,1963,85:401-414
    [36]BREUGELMANS F A E.Influence of Incidence Angle on the Secondary Flow in Compressor Cascade With Different Dihedral Distribution[C]//International Socity for Air Breathing Engine,Beijing,1985:70-78
    [37]王会社.不同叶型和叶片积叠线及弯曲角对压气机叶栅流场的影响[D].哈尔滨工业大学,2001WANG Huishe.The Influence of Different Profiles and Stacking Lines with Different Curved Angles on the Flow Field in Compressor Cascade[D].Harbin Institute of Technology,2001
    [38]阚晓旭.矩形扩压叶栅中应用叶尖小翼的性能研究[D].大连海事大学,2012KAN Xiaoxu.Investigation of Performance by Using Blade Tip Winglet in Rectangular Compressor Cascade[D].Dalian Maritime University,2012
    [39]Kang Shun,Wang Zhongqi.Application of Topological Analysis to Studying the Three-dimensional Flow in Cascades;Part I.Topological Rules for Skin-friction Lines and Section Streamlines[J].Applied Mathematics and Mechanics,1990,11(5):489-495

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700