低温胁迫对杂交鹅掌楸幼苗活性氧和活性氮代谢的影响
详细信息    查看全文 | 推荐本文 |
  • 作者:成铁龙 ; 彭冶 ; 施季森 ; 陈金慧 ; 杨立明
  • 关键词:杂交鹅掌楸 ; 低温 ; 活性氧 ; 活性氮
  • 中文刊名:JSNY
  • 英文刊名:Jiangsu Agricultural Sciences
  • 机构:南方现代林业协同创新中心;南京林业大学生物与环境学院;南京林业大学林木遗传与生物技术省部共建教育部重点实验室;
  • 出版日期:2017-12-25 11:09
  • 出版单位:江苏农业科学
  • 年:2017
  • 期:v.45
  • 基金:国家“863”计划(编号:2013AA102705);; 江苏省高校自然科学基金(编号:13KJA220001);; 江苏省高校青蓝工程;; 江苏省高校优势学科建设工程(PAPD)
  • 语种:中文;
  • 页:JSNY201724026
  • 页数:4
  • CN:24
  • ISSN:32-1214/S
  • 分类号:107-110
摘要
为了探究低温胁迫处理对鹅掌楸[Liriodendron chinense(Hemsl.)Sarg.]幼苗叶片内的活性氧和活性氮代谢的影响,以杂交鹅掌楸幼苗为材料,在4℃条件下处理6 d,随后于室温下恢复2 d,测定不同时间段幼苗叶片内超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、一氧化氮合成酶(NOS)等酶活性的变化,以及超氧阴离子(O_2~-·)、过氧化氢(H_2O_2)、一氧化氮(NO)的含量。结果表明,6 d的低温胁迫处理引起了杂交鹅掌楸幼苗叶片内SOD、CAT、NOS活性逐渐升高;室温恢复2d后叶片内SOD、CAT、NOS活性又有所降低,但仍高于对照。低温胁迫处理6 d,O_2~-·和H_2O_2含量升高并维持在较高的水平,NO含量也呈现增加的趋势;室温恢复2 d后叶片内O_2~-·、H_2O_2和NO含量有所降低,但仍高于对照。低温胁迫导致杂交鹅掌楸幼苗叶片积累了大量的活性氧和活性氮代谢物,引起其氧化还原系统的失衡,进而对植株造成伤害。
        
引文
[1]陈金慧.杂交鹅掌楸体细胞胚胎发生研究[D].南京:南京林业大学,2003.
    [2]Li W,Wang R,Li M,et al.Differential degradation of extraplastidic and plastidic lipids during freezing and post-freezing recovery in Arabidopsis thaliana[J].Journal of Biology Chemistry,2008,283(1):461-468.
    [3]Zhu J,Dong C H,Zhu J K.Interplay between cold-responsive gene regulation,metabolism and RNA processing during plant cold acclimation[J].Current Opinion Plant Biology,2007,10(3):290-295.
    [4]Mittler R,Vanderauwera S,Gollery M,et al.Reactive oxygen gene network of plants[J].Trends in Plant Science,2004,9:490-498.
    [5]Mittler R.Oxidative stress,antioxidants and stress tolerance[J].Trends in Plant Science,2002,7:405-410.
    [6]Kerchev P,Mühlenbock P,Denecker J,et al.Activation of auxin signalling counteracts photorespiratory H2O2-dependent cell death[J].Plant Cell Environment,2015,38:253-265.
    [7]Wang Y,Lin A,Loake G J,et al.H2O2-induced leaf cell death and the crosstalk of reactive nitric/oxygen species[J].Journal of Integrative Plant Biology,2013,55:202-208.
    [8]Hasanuzzaman M,Hossain M A,Silva J A T,et al.Plant response and tolerance to abiotic oxidative stress:antioxidant defense is a key factor[M]//Venkateswarlu B,Shanker A K,Shanker C,et al.Crop stress and its management:perspectives and strategies.Netherlands:Springer,2012:261-315.
    [9]刘零怡,赵丹莹,郑杨,等.植物在低温胁迫下的过氧化氢代谢及信号转导[J].园艺学报,2009,36(11):1701-1708.
    [10]You J,Chan Z L.ROS regulation during abiotic stress responses in crop plants[J].Frontiers in Plant Science,2015,6:1092.
    [11]Hill B G,Dranka B P,Bailey S M,et al.What part of NO don’t you understand?Some answers to the cardinal questions in nitric oxide biology[J].Journal of Biology Chemistry,2010,285:19699-19704.
    [12]Airaki M,Leterrier M,Mateos R M,et al.Metabolism of reactive oxygen species and reactive nitrogen species in pepper(Capsicum annuum L.)plants under low temperature stress[J].Plant Cell Environment,2012,35:281-295.
    [13]Beauchamp C,Fridovich I.Superoxide dismutase:improved assays and an assay applicable to acrylamide gels[J].Analytical Biochemistry,1971,44:276-287.
    [14]Aebi H.Catalase in vitro[J].Method of Enzymology,1984,105:121-126.
    [15]González A,Cabrera M de los,Henríquez M J,et al.Cross talk among calcium,hydrogen peroxide,and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess[J].Plant Physiology,2012,158:1451-1462.
    [16]Rook G A,Steele J,Umar S,et al.A simple method for the solubilization of reduced NBT,and its use as a colorimetric assay for activation of human macrophages by gamma-interferon[J].Journal of Immunology Methods,1985,82:161-167.
    [17]Kotchoni S O,Kuhns C,Ditzer A,et al.Overexpression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress[J].Plant Cell Environment,2006,29:1033-1048.
    [18]Mur L A,Mandon J,Cristescu S M,et al.Methods of nitric oxide detection in plants:a commentary[J].Plant Science,2011,181:509-519.
    [19]Zielonka J,Zielonka M,Sikora A,et al.Global profiling of reactive oxygen and nitrogen species in biological systems:high-throughput real-time analyses[J].Journal of Biology Chemistry,2012,287:2984-2995.
    [20]Cruz de Carvalho M H.Drought stress and reactive oxygen species:Production,scavenging and signaling[J].Plant Signal Behavior,2008,3:156-165.
    [21]Puyaubert J,Baudouin E.New clues for a cold case:nitric oxide response to low temperature[J].Plant Cell Environment,2014,37:2623-2630.
    [22]Lindermayr C,Durner J.Interplay of reactive oxygen species and nitric oxide:nitric oxide coordinates reactive oxygen species homeostasis[J].Plant Physiology,2015,167:1209-1210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700