胶质母细胞瘤免疫治疗研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review of Immunotherapy for Glioblastoma
  • 作者:刘梦昱 ; 谢飞 ; 张鑫 ; 赵鹏翔
  • 英文作者:LIU Mengyu;XIE Fei;ZHANG Xin;ZHAO Pengxiang;College of Life Science and Bioengineering, Beijing University of Technology;Beijng Engineering Researching Center of Laser Technology, Beijing University of Technology;
  • 关键词:胶质母细胞瘤 ; 免疫治疗 ; 疫苗 ; T细胞 ; 临床试验
  • 英文关键词:glioblastoma;;immunotherapy;;vaccine;;T cell;;clinic trail
  • 中文刊名:SWJZ
  • 英文刊名:Current Biotechnology
  • 机构:北京工业大学生命科学与生物工程学院;北京工业大学激光工程研究院;
  • 出版日期:2019-05-25
  • 出版单位:生物技术进展
  • 年:2019
  • 期:v.9;No.51
  • 基金:国家自然科学基金项目(81602408);; 北京市激光应用技术工程技术研究中心开放课题(BG0046-2018-03);; 北京工业大学2018日新人才项目支持经费(015000514118003)资助
  • 语种:中文;
  • 页:SWJZ201903003
  • 页数:8
  • CN:03
  • ISSN:33-1375/Q
  • 分类号:13-20
摘要
免疫治疗旨在提高机体对肿瘤的免疫应答。如今所采用的主要手段包括提高机体部分的免疫应答或针对靶向抗原刺激机体产生相应的免疫应答。其中,后者通常将重新启动免疫应答的细胞引入体内使免疫系统直接作用于靶标抗原。临床上,主要将免疫治疗应用于黑素瘤和前列腺瘤等实体瘤的治疗中。中枢神经系统曾被认为是免疫特免区,然而近年来大量的研究表明脑部的免疫系统处于高水平活化状态并能够与脑部肿瘤相互作用。因此,研究并利用这种免疫作用对于恶性脑部肿瘤的治疗十分重要。针对近年来恶性胶质母细胞瘤的免疫治疗进展进行了总结,并对中枢神经系统和胶质母细胞瘤的免疫机制、免疫治疗疫苗及T细胞疗法在肿瘤治疗中的研究进行了详细的介绍,以期为发展出更为有效的靶向治疗手段进而大幅提高GBM患者的生存时间带来新的思路。
        Immunotherapy aims to increase the body's immune response to tumors. The primary means used today include increasing the immune response in the body part or generating a corresponding immune response against the targeted antigen stimulating organism. Among them, the latter usually introduces cells that restart the immune response into the body to directly act on the target antigen by the immune system. Clinically, immunotherapy is mainly applied to the treatment of solid tumors such as melanoma and prostate tumor. The central nervous system was once thought to be an immune privilege zone, but in recent years a large number of studies have shown that the brain's immune system is at a high level of activation and can interact with brain tumors. Therefore, research and use of this immune function is very important for the development of treatment of malignant brain tumors. This article summarized recent advances in immunotherapy for malignant glioblastoma, and provided a detailed introduction to the immunological mechanisms of central nervous system and glioblastoma, immunotherapy vaccines, and T cell therapy in cancer therapy.
引文
[1] Lathia J D,Mack S C,Mulkearns-Hubert E E,et al..Cancer stem cells in glioblastoma[J].Genes Dev.,2015,29(12):1203-1217.
    [2] Hambardzumyan D,Amankulor N M,Helmy K Y,et al..Modeling adult gliomas using RCAS/t-va technology[J].Transl.Oncol.,2009,2(2):89-IN6.
    [3] Weller M,Wick W,Aldape K,et al..Glioma[J].Nat.Rev.Dis.Primers,2015,1:15017.
    [4] Louis D N,Perry A,Reifenberger G,et al..The 2016 World Health Organization classification of tumors of the central nervous system:A summary[J].Acta Neuropathol.,2016,131(6):803-820.
    [5] 汪超甲,王辉,胡钧涛,等.CRISPR/Cas9敲除pyk2基因对人脑胶质瘤细胞增殖、迁移及侵袭能力的影响[J].生物技术进展,2017,7(4):338-344.
    [6] Delgado-Lopez P,Corrales-Garcia E.Survival in glioblastoma:A review on the impact of treatment modalities[J].Clin.Transl.Oncol.,2016,18(11):1062-1071.
    [7] Zhu P,Du X L,Lu G,et al..Survival benefit of glioblastoma patients after FDA approval of temozolomide concomitant with radiation and bevacizumab:A population-based study[J].Oncotarget,2017,8(27):44015.
    [8] Chin K M,Chan C Y,Lee S Y.Spontaneous regression of pancreatic cancer:A case report and literature review [J].Int.J.Surgery Case Rep.,2018,42(C):55-59.
    [9] Mccarthy E F.The toxins of William B.Coley and the treatment of bone and soft-tissue sarcomas[J].Iowa Orthop.J.,2006,26(26):154.
    [10] Chakrabarty A M.Microorganisms and cancer:Quest for a therapy[J].J.Bacteriol.,2003,185(9):2683-2686.
    [11] Wen M,Zheng J H,Choi J M,et al..Genetically-engineered Salmonella typhimurium expressing TIMP-2 as a therapeutic intervention in an orthotopic glioma mouse model[J].Cancer Lett.,2018,433:140-146.
    [12] Lebbé C,Weber J S,Maio M,et al..Survival follow-up and ipilimumab retreatment of patients with advanced melanoma who received ipilimumab in prior phase II studies[J].Ann.Oncol.,2014,25(11):2277-2284.
    [13] Woroniecka K,Chongsathidkiet P,Elsamadicy A,et al..Flow cytometric identification of tumor-infiltrating lymphocytes from glioblastoma[J].Methods Mol.Biol.,2018,1741:221.
    [14] Nunes-Xavier C E,Angulo J C,Pulido R,et al..A critical insight into the clinical translation of PD-1/PD-L1 blockade therapy in clear cell renal cell carcinoma[J].Curr.Urol.Rep.,2019,20(1):1.
    [15] Heynckes S,Daka K,Franco P,et al..Crosslink between temozolomide and PD-L1 immune-checkpoint inhibition in glioblastoma multiforme[J].BMC Cancer,2019,19(1):117.
    [16] Wilson J,Chumas P,Goodden J,et al..Response to the letter to the editor systemic inflammatory response in pediatric central nervous system tumors[J].Acta Neuroch.,2018,160(6):1-2.
    [17] Jiang G M,Tan Y,Wang H,et al..The relationship between autophagy and the immune system and its applications for tumor immunotherapy[J].Mol.Cancer,2019,18(1):17.
    [18] Felthun J,Reddy R,Mcdonald K L.How immunotherapies are targeting the glioblastoma immune environment[J].J.Clin.Neurosci.Off.J.Neurosur.Soc.Austr.,2018,47:20.
    [19] Jackson C M,Kochel C M,Nirschl C J,et al..Systemic tolerance mediated by melanoma brain tumors is reversible by radiotherapy and vaccination[J].Clin.Cancer Res.Off.J.Am.Assoc.Cancer Res.,2015,22(5):1161.
    [20] Orin B,Crane C A,Rajwant K,et al..Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages[J].Clin.Cancer Res.Off.J.Am.Assoc.Cancer Res.,2013,19(12):3165-3175.
    [21] Van W D B,Kleijn A,Teunissen C E,et al..Oncolytic virotherapy in glioblastoma patients induces a tumor macrophage phenotypic shift leading to an altered glioblastoma microenvironment[J].Neuro Oncol.,2018,20(11):1494-1504.
    [22] Melanie G,Heppner F L,Lemos M P,et al..Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis[J].Nat.Med.,2005,11(3):328-34.
    [23] Chongsathidkiet P,Farber S H,Woroniecka K,et al..IMST-11.downregulation of sphingosine-1-phosphate receptor type 1 mediates bone marrow T-cell sequestration in patients and mice with glioblastoma [J].Neuro Oncol.,2016,18(6):88.
    [24] Reardon D A,Gokhale P C,Klein S R,et al..Glioblastoma eradication following immune checkpoint blockade in an orthotopic,immunocompetent model[J].Cancer Immunol.Res.,2016,4(2):124-135.
    [25] Esposito C L,Nuzzo S,Catuogno S,et al..STAT3 gene silencing by aptamer-siRNA chimera as selective therapeutic for glioblastoma[J].Mol.Ther.Nucl.Acids,2018,10:398-411.
    [26] Js H,Eh J,My K,et al..Glioma-secreted soluble factors stimulate microglial activation:The role of interleukin-1β and tumor necrosis factor-α[J].J.Neuroimmunol.,2016,298:165-171.
    [27] Valentini D,Rao M,Meng Q,et al..Identification of neoepitopes recognized by tumor-infiltrating lymphocytes (TILs) from patients with glioma[J].Oncotarget,2018,9(28):19469-19480.
    [28] Kapp K,Volz B,Curran M A,et al..EnanDIM - a novel family of L-nucleotide-protected TLR9 agonists for cancer immunotherapy[J].J.Immunother.Cancer,2019,7(1):5.
    [29] Neidert M C,Schoor O,Trautwein C,et al..Natural HLA class I ligands from glioblastoma:Extending the options for immunotherapy[J].J.Neuro Oncol.,2013,111(3):285-294.
    [30] Marian Christoph N,Oliver S,Claudia T,et al..Natural HLA class I ligands from glioblastoma:Extending the options for immunotherapy[J].J.Neuro Oncol.,2013,111(3):285-294.
    [31] Wong A J,Ruppert J M,Bigner S H,et al..Structural alterations of the epidermal growth factor receptor gene in human gliomas[J].Proc.Natl.Acade.Sci.USA,1992,89(7):2965-2969.
    [32] Sampson J H,Heimberger A B,Archer G E,et al..Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma[J].J.Clin.Oncol.,2010,28(31):4722.
    [33] Theresa S,Lukas B,Stefan P,et al..A vaccine targeting mutant IDH1 induces antitumour immunity[J].Nature,2014,512(7514):324-327.
    [34] Diplas B H,He X,Brosnancashman J A,et al..The genomic landscape of TERT promoter wildtype-IDH wildtype glioblastoma[J].Nat.Commun.,2018,9(1):2087-2098.
    [35] Landi D,Hegde M,Ahmed N.Human cytomegalovirus antigens in malignant gliomas as targets for adoptive cellular therapy[J].Front.Oncol.,2014,4:338.
    [36] Rampling R,Peoples S,Mulholland P J,et al..A cancer research UK first time in human phase I trial of IMA950 (novel multi peptide therapeutic vaccine) in patients with newly diagnosed glioblastoma[J].Clin.Cancer Res.Off.J.Am.Assoc.Cancer Res.,2016,22(19):4776.
    [37] Hua G,Yan Y,Guo L,et al..Prognostic role of HSPs in human gastrointestinal cancer:A systematic review and meta-analysis[J].Oncotargets Ther.,2018,11:351-359.
    [38] Wruck F,Avellaneda M J,Koers E J,et al..Protein folding mediated by trigger factor and Hsp70:New insights from single-molecule approaches[J].J.Mol.Biol.,2018,430(4):438-449.
    [39] Crane C A,Han S J,Ahn B,et al..Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 kD chaperone protein[J].Clin.Cancer Res.Off.J.Am.Assoc.Cancer Res.,2013,19(1):205-214.
    [40] Bloch O,Crane C A,Fuks Y,et al..Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma:A phase II,single-arm trial[J].Neuro Oncol.,2014,16(2):274-279.
    [41] Choi P J,Tubbs R S,Oskouian R J.Emerging cellular therapies for glioblastoma multiforme[J].Cureus,2018,10(3):e2305.
    [42] Sayegh E T,Oh T,Fakurnejad S,et al..Vaccine therapies for patients with glioblastoma[J].J.Neuro Oncol.,2014,119(3):531-546.
    [43] Schirrmacher V,Haas C,R,Ahlert T,et al..Human tumor cell modification by virus infection:An efficient and safe way to produce cancer vaccine with pleiotropic immune stimulatory properties when using Newcastle disease virus[J].Gene Ther.,1999,6(1):63-73.
    [44] Hans H S,Matteo M B,Philipp B,et al..Antitumor vaccination of patients with glioblastoma multiforme:A pilot study to assess feasibility,safety,and clinical benefit[J].J.Clin.Oncol.,2004,22(21):4272-4281.
    [45] Berzofsky J A,Terabe M,Trepel J B,et al..Cancer vaccine strategies:Translation from mice to human clinical trials[J].Cancer Immunol.Immunother.,2018,67(12):1863-1869.
    [46] Santos P M,Butterfield L H.Dendritic cell-based cancer vaccines[J].J.Immunol.,2018,200(2):443.
    [47] Slovin S F.Sipuleucel-T:When and for whom to recommend it[J].Oncology,2017,31(12):900.
    [48] Prins R M,Horacio S,Vera K,et al..Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy[J].Clin.Cancer Res.Off.J.Am.Assoc.Cancer Res.,2011,17(6):1603.
    [49] Liau L M,Ashkan K,Tran D D,et al..First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma[J].J.Transl.Med.,2018,16(1):142.
    [50] Phuphanich,Surasak,Rudnick,et al..Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma[J].Cancer Immunol.Immunother.,2013,62(1):125-135.
    [51] Hdeib A,Sloan A.Immunotherapy for malignant primary brain tumors with ICT-107,a dendritic cell vaccine[J].Expert Opin.Orphan Drugs,2017,5(1):85-89.
    [52] Rahman M,Dastmalchi F,Karachi A,et al..The role of CMV in glioblastoma and implications for immunotherapeutic strategies[J].OncoImmunology,2019,8(1):e1514921.
    [53] Liu Z,Poiret T,Meng Q,et al..Epstein-barr virus- and cytomegalovirus-specific immune response in patients with brain cancer[J].J.Transl.Med.,2018,16(1):182.
    [54] Prins R M,Cloughesy T F,Liau L M.Cytomegalovirus immunity after vaccination with autologous glioblastoma lysate[J].New England J.Med.,2008,359(5):539-41.
    [55] Tania C,Leone B,Corey S,et al..Ex vivo functional analysis,expansion and adoptive transfer of cytomegalovirus-specific T-cells in patients with glioblastoma multiforme[J].Immunol.Cell Biol.,2012,90(9):872.
    [56] Reap E A,Suryadevara C M,Batich K A,et al..Dendritic cells enhance polyfunctionality of adoptively transferred T cells that target cytomegalovirus in glioblastoma[J].Cancer Res.,2018,doi:canres.0469.2017.
    [57] Batich K A,Reap E A,Archer G E,et al..Long-term survival in flioblastoma with cytomegalovirus pp65-targeted vaccination[J].Clin.Cancer Res.Off.J.Am.Assoc.Cancer Res.,2017,23(8):1898-1909.
    [58] Prinzing B L,Gottschalk S M,Krenciute G.CAR T-cell therapy for glioblastoma:Ready for the next round of clinical testing?[J].Expert Rev.Anticancer Ther.,2018,doi:14737140.2018.1451749.
    [59] Woroniecka K I,Rhodin K E,Chongsathidkiet P,et al..T-cell dysfunction in glioblastoma:Applying a new framework[J].Clin.Cancer Res.,2018,doi:clincanres.0047.2018.
    [60] Miao H,Choi B D,Suryadevara C M,et al..EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma[J].PLoS ONE,2014,9(4):e94281.
    [61] Sahin A,Sanchez C,Bullain S,et al..Development of third generation anti-EGFRvIII chimeric T cells and EGFRvIII-expressing artificial antigen presenting cells for adoptive cell therapy for glioma[J].PLoS ONE,2018,13(7):e0199414.
    [62] Grada Z,Hegde M,Byrd T,et al..TanCAR:A novel bispecific chimeric antigen receptor for cancer immunotherapy[J].Mol.Ther.Nucl.Acids,2013,2(7):e105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700