大口径AZ31镁合金管材宽展分流挤压工艺仿真研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation Study on SDEP Extrusion Process of AZ31 Magnesium Alloy Tube with Large Diameter
  • 作者:雷同飞 ; 潘峰
  • 英文作者:LEI Tongfei;PAN Feng;College of Mechanical Engineering, Xijing University;
  • 关键词:大口径AZ31镁合金管材 ; 宽展分流挤压 ; 挤压力 ; 焊合压力
  • 英文关键词:large diameter AZ31 magnesium alloy tube;;spread-dividing extrusion process(SDEP);;extrusion force;;welding pressure
  • 中文刊名:SJGY
  • 英文刊名:Hot Working Technology
  • 机构:西京学院机械工程学院;
  • 出版日期:2019-01-16 11:13
  • 出版单位:热加工工艺
  • 年:2019
  • 期:v.48;No.503
  • 基金:陕西省自然科学基金项目(2013JM7026);; 陕西省教育厅专项科研计划项目(14JK2160);; 西京学院科研基金项目(XJ160118)
  • 语种:中文;
  • 页:SJGY201901049
  • 页数:4
  • CN:01
  • ISSN:61-1133/TG
  • 分类号:181-184
摘要
宽展分流挤压工艺(SDEP)是宽展挤压和分流挤压有机结合的新挤压工艺。它可以利用小吨位设备挤压大口径管材。使用DEFORM-3D有限元软件对大口径AZ31镁合金圆管宽展分流挤压(宽展比率α=2.54)过程中的挤压力、挤压温度以及焊合压力变化规律进行了仿真。结果表明:宽展分流挤压AZ31镁合金圆管(外径360 mm,壁厚10 mm)的挤压力为22.7 MN,比普通分流挤压的挤压力降低28%;AZ31镁合金管材(外径360 mm,壁厚10 mm)宽展分流挤压过程中焊合压力达到了225 MPa,宽展分流挤压的金属材料焊合质量良好。
        The spread-dividing extrusion process(SDEP) is a new extrusion technology which combines spread extrusion and porthole extrusion. It can use small-tonnage equipment to squeeze large diameter tube. The variations of extrusion pressure, extrusion temperature and welding pressure of alarge-diameter AZ31 magnesium alloy tube during spread-dividing extrusion(spread ratio α=2.54) were simulated. The results show that the extrusion pressure of the AZ31 magnesium alloy tube(external diameter of 360 mm and wall thickness of 10 mm) in spread-dividing extrusion process is 22.7MN, and the extrusion pressure is reduced by 28% compared with that of the common shunt extrusion; the welding pressure of AZ31 magnesium alloy tube(external diameter of 360 mm and wall thickness of 10 mm) in spread-dividing extrusion process reaches 225 MPa. The welding quality of the metal material extruded by spread-dividing extrusion process is good.
引文
[1]邓汝荣,黄雪梅.大断面空心铝型材挤压模的设计分析[J].轻合金加工技术,2015,43(3):39-43.
    [2]王锐.AZ31镁合金型材宽展挤压工艺参数研究[J].热加工工艺,2012,41(13):95-97.
    [3] Das Debdulal, Chattopadhyay Partha Protim.Influence of martensite morphology on the work-hardening behavior of high strength ferrite-martensite dual-phase steel[J].Journal of Materials Science,2009,44(11):2957-2965.
    [4] Lee Myoung Gyu, Kim Daeyong, Kim Chongmin, et al.Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and nonquadratic anisotropic yield functions,part III:applications[J].International Journal of Plasticity,2005,21(5):915-953.
    [5]杜刚,王引卫.AZ34镁合金棒材减径挤压规律宏微观耦合研究[J].轻合金加工技术,2013,41(10):35-37.
    [6]石磊,李继文,李永兵,等.等通道转角分流模挤压AZ31镁合金管材[J].材料热处理学报,2010,31(6):106-111.
    [7]石磊,杨合,郭良刚,等.ECHE挤压对AZ31镁合金组织和性能的影响[J].稀有金属材料与工程,2012,41(11):1955-1959.
    [8] Timokhina I B, Hodgson P D, Pereloma E V.Transmission electron microscopy characterization of the bake-hardening behavior of transformation-induced plasticity and dualphase steels[J].Metallurgical and Materials Transactions A,2007,38(10):2242-2454.
    [9] Moor E D, Lacroix S, Clarke A J, et al.Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels[J].Metallurgical and Materials Transactions A,2008,39(11):2586-2595.
    [10]雷同飞,潘峰.模具锥角对AZ31镁合金棒材热减径挤压的影响规律[J].锻压技术,2017,42(11):132-136.
    [11]雷同飞,马俊.车身轻量化镁合金型材ECAP复合挤压温度演化规律[J].热加工工艺,2015,44(17):89-91.
    [12] Li L,Zhang H, Zhou J, et al.Numerical and experimental study on the extrusion through a porthole die to produce a hollow magnesium profile with longitudinal weld seams[J].Materials&Design,2008,29(6):1190-1198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700