相位漂移对相位编码QKD系统及截获-重发攻击的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research about Effect of Phase Drift on Phase-Coding QKD System and Intercept-Resend Attack
  • 作者:焦海松 ; 王衍波 ; 何敏 ; 朱勇 ; 张志永
  • 英文作者:Jiao Haisong;Wang Yanbo;He Min;Zhu Yong;Zhang Zhiyong;Institute of Communications Engineering,PLA University of Science and Technology;
  • 关键词:量子光学 ; 量子密钥分发 ; 双马赫-曾德尔干涉仪 ; 相位漂移 ; 量子误码率 ; 窃听信息量
  • 英文关键词:quantum optics;;quantum key distribution;;double Mach-Zehnder interferometers;;phase drift;;quantum bit error rate;;amount of eavesdropping information
  • 中文刊名:JGDJ
  • 英文刊名:Laser & Optoelectronics Progress
  • 机构:中国人民解放军理工大学通信工程学院;
  • 出版日期:2015-04-10
  • 出版单位:激光与光电子学进展
  • 年:2015
  • 期:v.52;No.591
  • 基金:国家自然科学基金(11404407)
  • 语种:中文;
  • 页:JGDJ201504031
  • 页数:8
  • CN:04
  • ISSN:31-1690/TN
  • 分类号:215-222
摘要
针对相位编码量子密钥分发(QKD)系统中存在的相位漂移和截获-重发攻击,分析了双马赫-曾德尔干涉仪QKD系统,给出了探测器的输入信号模型,计算了系统量子误码率及窃听信息量,并为提高密钥生成率提供了一种可能的方法。研究表明,相位漂移会使系统误码率增加,稳定性降低;相比理想的截获-重发攻击,窃听信息量有所下降,因此密性放大过程对窃听信息的估计值可以相对减小,最终密钥生成率得以提高。在不考虑传输光纤中的相位相对漂移时,误码率随相位漂移角度呈余弦变化,全部截获-重发攻击时的变化周期是无窃听时的一半,变化频率更加剧烈。55%部分窃听时,若合法通信者选择误码阈值为15%,窃听者可获得25.5%的信息量且不被发现。
        In consideration of phase drift and intercept-resend(I-R) attack, the quantum key distribution(QKD)system based on double Mach-Zehnder interferometers is analyzed, the model of detectors′ input signal is built, and the formulas are presented to describe the relationship between the phase drift angle and quantum bit error rate(QBER), as well as the drift angle and eavesdropping information. Meanwhile, a possible method to increase the key generation rate is proposed. Analysis shows that phase drift causes extra errors and damages the system stability.Compared with I-R attack under ideal conditions, eavesdropping information declines, thus the eavesdropping information estimated by privacy amplification could decrease and the final key generation rate would increase.Regardless of the relative phase drift in transmission fiber, QBER varies with phase drift as cosine function, whose period decreases by half under total I-R attack, meaning more sensitive to phase drift. When eavesdropper chooses to attack 55% of all keys, she can gain 25.5% information undiscovered.
引文
1 H K Lo,H F Chau.Unconditional security of quantum key distribution over arbitrarily long distances[J].Science,1999,283(5410):2050-2056.
    2 C H Bennett,G Brassard.Quantum cryptography:public key distribution and coin tossing[C].Proceeding of IEEE International Conference on Computers,Systems and signal Processing,1984:175-179.
    3 Shen Zeyuan,Fang Jian,He Guangqiang,et al..Synchronous scheme and experimental realization in continuous variable quantum key distribution system[J].Chinese J Lasers,2013,40(3):0305004.申泽源,房坚,何广强,等.连续变量量子密钥分发系统中同步方案及实验实现[J].中国激光,2013,40(3):0305004.
    4 Zhao Guhao,Zhao Shanghong,Yao Zhoushi,et al..Quantum key distribution analysis for filtering scheme based on double fiber Bragg gating[J].Chinese J Lasers,2013,40(9):0918001.赵顾颢,赵尚弘,幺周石,等.基于双光纤布拉格光栅滤波的量子密钥分发误码率分析[J].中国激光,2013,40(9):0918001.
    5 Zhu Feng,Wang Qin.Quantum key distribution protocol based on heralded single photon source[J].Acta Optica Sinica,2014,34(6):0627002.朱峰,王琴.基于指示单光子源的量子密钥分配协议[J].光学学报,2014,34(6):0627002.
    6 Dong Chen,Zhao Shanghong,Dong Yi,et al..Analysis of quantum key distribution protocols in hybrid quantumclassical optical network[J].Laser&Optoelectronics Progress,2014,51(11):112701.东晨,赵尚弘,董毅,等.量子-经典混合光网络的密钥分配协议研究[J].激光与光电子学进展,2014,51(11):112701.
    7 D Gottesman,H K Lo,N Lukenhaus,et al..Security of quantum key distribution with imperfect devices[J].Quantum Information and Computation,2004,4(5):325-360.
    8 Scarani V,Bechmann-Pasquinucci H,Cerf NJ,et al..The security of practical quantum key distribution[J].Rev Mod Phys,2009,81(3):1301-1350.
    9 Hughes R J,Mongan G L,Peterso C G.Quantum key distribution over a 48 km optical fibre network[J].J Mod Opt,2000,47(2-3):533-547.
    10 Mo Xiaofan,Zhu Bing,Han Zhengfu,et al..Faraday-michelson system for quantum cryptography[J].Opt Lett,2005,30(19):2632-2634.
    11 Wu Guang,Zhou Chunyuan,Zeng Heping.Single-photon interference and router-control in an optic fiber Sagnac interferometer[J].Acta Physica Sinica,2004,53(3):698-702.吴光,周春源,曾和平.光纤Sagnac干涉仪中单光子干涉及路由控制[J].物理学报,2004,53(3):698-702.
    12 Dixon A R,Yuan Z L,Dynes J F,et al..Continuous operation of high bit rate quantum key distribution[J].Appl Phys lett,2010,96(16):161102.
    13 Chen Shuai,Wang Jindong,Zhong Pingping,et al..Influence of time jitter on quantum Bit error rate of phase-coding quantumkey distribution system[J].Acta Optica Sinica,2011,31(7):0727001.陈帅,王金东,钟平平,等.时间抖动对相位编码量子密钥分发系统量子误码率的影响[J].光学学报,2011,31(7):0727001.
    14 Feihu Xu,Bing Qi,Hoi-Kwong Lo.Experimental demonstration of phase-remapping attack in a practical quantum key distribution system[J].New J Phys,2010,12(11):113026.
    15 S H Sun,M S Jiang,L M Liang.Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system[J].Phys Rev A,2011,83(6):062331.
    16 S H Sun,M S Jiang,L M Liang.Single-photon-detection attack on the phase-coding continuous-variable quantum cryptography[J].Phys Rev A,2012,86(1):012305.
    17 Gisin N,Ribordy G,Tittle W,et al..Quantum cryptography[J].Rev Mod Phys,2002,74(1):145-195.
    18 Ma Rui Lin.Quantum Cryptography Communication[M].Beijing:Science Press,2006,74:88-89.马瑞霖.量子密码通信[M].北京:科学出版社,2006,74:88-89.
    19 Gerd Keiser.Optical Fiber Communications[M].Beijing:Publishing House of Electronics Industry,2012:304-308.凯泽.光纤通信[M].北京:电子工业出版社,2012:304-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700