陕北毛乌素沙漠区潜水含水层富水性及动态变化特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Unconfined aquifer water-richness and dynamic change features of Mu Us Desert Area in northern Shaanxi
  • 作者:贺晓浪 ; 段中会 ; 苗霖田 ; 张建军
  • 英文作者:HE Xiao-lang;DUAN Zhong-hui;MIAO Lin-tian;ZHANG Jian-jun;College of Geology and Environment,Xi'an University of Science and Technology;China Coal Energy Research Institute Co.,Ltd.;Key Laboratory of Coal Resources Exploration and Comprehensive Utilization,Ministry of Land and Resources;
  • 关键词:地质资源与地质工程 ; 潜水含水层 ; 富水性评价 ; 保水采煤
  • 英文关键词:geological resources and geological engineering;;unconfined aquifer;;water-richness evaluation;;coal mining with water protection
  • 中文刊名:XKXB
  • 英文刊名:Journal of Xi'an University of Science and Technology
  • 机构:西安科技大学地质与环境学院;中煤能源研究院有限责任公司;国土资源部煤炭资源勘查与综合利用重点实验室;
  • 出版日期:2019-01-31
  • 出版单位:西安科技大学学报
  • 年:2019
  • 期:v.39;No.165
  • 基金:陕西省科技统筹创新工程计划项目(2014KTZB01-03-03)
  • 语种:中文;
  • 页:XKXB201901013
  • 页数:8
  • CN:01
  • ISSN:61-1434/N
  • 分类号:91-98
摘要
针对沙漠区潜水含水层富水性评价问题,基于野外调查和理论研究,总结认为毛乌素沙漠区内潜水含水层富水性主要由3层次5个因素综合控制,结合层次分析法、模糊聚类,提出了该区内潜水含水层富水性评价模型,并分析了各影响因素在一个水文年内的变化特征,综合评价了区内萨拉乌苏组潜水含水层的富水性分区特征及其动态变化规律。结果表明:区内潜水含水层以富水性弱区分布最广,且明显大于其他区域,同时该区的面积、形态也最容易受到枯水期和丰水期变化的影响。而较弱富水区的面积对季节变化不敏感,但其分布的区域发生了较大变化。相比之下,较强和强富水含水区则受到的影响较小。
        Based on the field investigation and theoretical research,it is summarized that the water richness of phreatic aquifer in Mu Us desert area is mainly controlled by 5 factors which can be formed of3 hierarchies,AHP( analytic hierarchy process) and fuzzy clustering method were adopted to build the water richness evaluation model of unconfined aquifer in the district,and the characteristics of each index in one hydrological year were analyzed. Partition characteristics and the dynamic change features of Salawusu phreatic aquifer were comprehensively evaluated. The results show that the area with weakest water yield is most widely distributed and significantly greater than other areas,its area and shape are also the most vulnerable to the wet and dry season change,while the area of weaker water-richness district would be less influenced by this change,but significant changes have taken place in its distribution shape. Stronger and strongest water richness zones,in contrast,were less affected.
引文
[1]李文平,段中会,华解明,等.陕北榆神府矿区地质环境现状及采煤效应影响预测[J].工程地质学报,2000,8(3):324-333.LI Wen-ping,DUAN Zhong-hui,HUA Jie-ming,et al. Evaluation of present geological environment and prediction of its variation caused by mining in Yushenfu mine area of north Shaanxi[J]. Journal of Engineering Geology,2000,8(3):324-333.
    [2]范立民,马雄德,冀瑞君.西部生态脆弱矿区保水采煤研究与实践进展[J].煤炭学报,2015,40(8):1711-1717.FAN Li-min,MA Xiong-de,JI Rui-jun. Progress in engineering practice of water-preserved coal mining in western eco-environment frangible area[J]. Journal of China Coal Society,2015,40(8):1711-1717.
    [3] Ghoubachi,Saad Younes. Impact of lake nasser on the groundwater of the Nubia sandstone aquifer system in Tushka area,South Western Desert,Egypt[J]. Journal of King Saud University Science,2012 24(2):101-109.
    [4]张天模,李健,施龙青,等.物探技术在矿井水防治中的应用研究[J].西安科技大学学报,2013,33(1):56-60.ZHANG Tian-mo,LI Jian,SHI Long-qing,et al. Application of geophysical exploration technique in the mine water prevention and control[J]. Journal of Xi’an University of Science and Technology,2013,33(1):56-60.
    [5]于师建.三软煤层上覆含水层富水性瞬变电磁法探测技术[J].煤炭科学技术,2015,43(1):104-107,73.YU Shi-jian. Transient electromagnetic method detecting technology of water-bearing occurence of aquifers in three-soft coal seam overlying rocks[J]. Coal Science and Technology,2015,43(1):104-107,73.
    [6]武强,张志龙,马积福.煤层底板突水评价的新型实用方法—主控指标体系的建设[J].煤炭学报,2007,32(1):42-47.WU Qiang,ZHANG Zhi-long,MA Ji-fu. A new practical methodology of the coal floor water bursting evaluatingⅡ-the master controlling index system constru-ction[J]. Journal of China Coal Society,2007,32(1):42-47.
    [7]武强,殷作如.评价煤层顶板涌(突)水条件的“三图—双预测法”[J].煤炭学报,2000,25(1):60-65.WU Qiang,HUANG Xiao-ling,DONG Dong-lin.“Three maps-two predictions”method to evaluate water bursting conditions on roof coal[J]. Journal of China Coal Society,2000,25(1):60-65.
    [8]邱士利.基于GIS的岩溶地下水富水性评价方法研究[D].北京:中国地质科学院,2006.QIU Shi-li. Quantitative evaluation of karst groundwater yield property based on GIS technology[D]. Beijing:Chinese Academy of Geological Sciences,2006.
    [9]韩超,泮晓华,李国梁.基于GIS多源信息集成的含水层富水性模糊层次分析法[J].水文地质工程地质,2012,39(4):19-25.HAN Chao,PAN Xiao-hua,LI Guo-liang,et al. The fuzzy analytic hierarchy process of water abundance of an aquifer based on GIS and multi-source information fusion techniques[J]. Hydrogeology and Engineering Geology,2012,39(4):19-25.
    [10]范立民,向茂西,彭捷,等.西部生态脆弱矿区地下水对高强度采煤的响应[J].煤炭学报,2016,41(11):2672-2678.FAN Li-min,XIANG Mao-xi,PENG Jie,et al. Groundwater response to intensive mining in ecologically fragile area[J]. Journal of China Coal Society,2016,41(11):2672-2678.
    [11]彭涛,宣良瑞,张海潮,等.卧龙湖煤矿砂岩含水层富水性预测及评价[J].煤矿安全,2014(8):199-202.PENG Tao,XUAN Liang-rui,ZHANG Hai-chao,et al.Prediction and evaluation of water abundance of sandstone aquifer in wolonghu coal mine[J]. Coal&Safety,2012,39(4):19-25.
    [12]范立民,王双明,刘社虎,等.榆神矿区矿井涌水量特征及影响因素[J].西安科技大学学报,2009,29(1):7-11.FAN Li-min,WANG Shuang-ming,LIU She-hu,et al.Outcome characteristics and influ-encing factor of coalmining wastewater in Yushen mining area[J]. Journal of Xi’an University of Science and Technology,2009,29(1):7-11.
    [13]邵亚红,姚多喜,鲁海峰,等.松散层底部含水层富水性评价[J].煤矿安全,2014,45(7):127-130.SHAO Ya-hong,YAO Duo-xi,LU Hai-feng,et al. Evaluation of water abundance of loose bed bottom aquifer[J]. Safty in Coal Mines,2014,45(7):127-130.
    [14]魏广庆.板集井田新生界底部松散层富水性分布规律及其对煤层开采影响研究[D].淮南:安徽理工大学,2005.WEI Guang-qing. Study on aquifer parameters of the lowermost Cenozoic unconsolidated strata in the Banji Coalfield and its influence on coal mining activites[D].Huainan:Anhui University of Science and Technology,2005.
    [15]刘瑞新.松散含水层下提高开采上限的研究与实践[J].煤炭科学技术,2010,38(11):56-59.LIU Rui-xin. Study and practices on improvement of mining up limit under loose aquifer[J]. Coal Science and Technology,2010,38(11):56-59.
    [16]李小龙,姚多喜.孙疃矿第四含水层分布特征及富水性评价[J].安徽理工大学学报(自然科学版),2013,33(4):15-19.LI Xiao-long,YAO Duo-xi. Distribution characteristics and evaluation of the fourth aquifer in Suntong[J]. Journal of Anhui University of Science and Technology(Natural Science),2013,33(4):15-19.
    [17]段鹏.包气带岩性结构对地下水补给的影响研究[D].西安:长安大学,2013.DUAN Peng. The effect of soil texture and structure of vadose zone on recharge of groundwater[D]. Xi’an:Chang’an University,2013.
    [18]武强,樊振丽.基于GIS的信息融合型含水层富水性评价方法——富水性指数法[J].煤炭学报,2011,36(7):1124-1128.WU Qiang,FAN Zhen-li. Water-richness evaluation method of water-filled aquifer based on the principle of information fusion with GIS:water-richness index method[J]. Journal of China Coal Society,2011,36(7):1124-1128.
    [19]李树忱,冯现大,李术才,等.矿井顶板突水模型试验多场信息的归一化处理方法[J].煤炭学报,2011,36(3):447-451.LI Shu-chen,FENG Xian-da,LI Shu-cai,et al. The normalization process of the multi-field information from a coal mine water-inrush model test[J]. Journal of China Coal Society,2011,36(3):447-451.
    [20] Steiner B L,Antolín F,Jacomet S. Testing of the consistency of the sieving(wash-over)process of waterlogged sediments by multiple operators[J]. Journal of Archaeological Science Reports,2015,2:310-320.
    [21]兰太权.再论“单位涌水量就是导水系数”[J].水文地质工程地质,2016,43(5):173-175LAN Tai-quan. Revisit “the specific well yield is the transmissivity”[J]. Hydro-Geology and Engineering Geology,2016,43(5):173-175.
    [22]葛天民.关于导水系数T与单位涌水量q的关系讨论[J].勘察科学技术,1984(2):17.GE Tian-min. The discussion on specific capacity and the transmissivity[J]. Exploration of Science and Technology,1984(2):17.
    [23] Boucher M,Favreau G,Vouillamoz J M,et al. Estimating specific yield and transmissivity with magnetic resonance sounding in an unconfined sandstone aquifer(Niger)[J]. Hydrogeology Journal,2009,17(7):1805-1815.
    [24]朱芮芮,郑红星,刘昌明.黄土高原典型流域地下水补给-排泄关系及其变化[J].地理科学,2010,30(1):108-112.ZHU Rui-rui,ZHENG Hong-xing,LIU Chang-min.Changes of ground water recharge and discharge in watershed of the loess plateau[J]. Scientia Geographica Sinica,2010,30(1):108-112.
    [25] Chang C,Der Yeh H. Variability quantification of excess pressure head in heterogeneous deformable aquifers[J].Applied Mathematical Modelling,2016,40(19-20):8580-8591.
    [26] Masetti M,Pedretti D,Sorichetta A,et al. Impact of a storm-water infiltration basin on the recharge dynamics in a highly permeable aquifer[J]. Water Resources Management,2016,30(1):149-165.
    [27]贺晓浪.小保当煤矿潜水含水层富水性及受采动影响分析[D].西安:西安科技大学,2016.HE Xiao-lang. Water-richness evaluation of unconfined aquifer and mining effects on the aquifer in Xiaobaodang coal mine[D]. Xi’an:Xi’an University of Science and Technology,2016.
    [28]吴永胜,哈斯,乌格特茉勒.毛乌素沙地南缘沙丘表面径流特征[J].科学通报,2011,56(34):2917-2922.WU Yong-sheng,Hasi E,Wugetemole. Characteristics of surface runoff in a sandy area in southern Mu Us sandy land[J]. Chinese Science Bulletin,2011,56(34):2917-2922.
    [29] Nishigaki T,Sugihara S,Kilasara M,et al. Surface runoff generation and soil loss under different soil and rainfall properties in the Uluguru Mountains,Tanzania[J]. Land Degradation and Development,2017,28(1):283-293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700