基于多源空间信息融合的含水煤层顶板复合岩层富水性分区
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multi-source spatial information fusion-based water abundance zoning of the composite layer of water-bearing seam roof
  • 作者:周振方 ; 董阳 ; 董兴玲 ; 李鹏 ; 王强民 ; 乔伟 ; 赵春虎 ; 杨建
  • 英文作者:ZHOU Zhenfang;DONG Yang;DONG Xingling;LI Peng;WANG Qiangmin;QIAO Wei;ZHAO Chunhu;YANG Jian;R&D Center of Mine Disaster Control and Environment Management Technology,Xi'an Research Institute Co.Ltd.,China Coal Technology and Engineering Group Corp.;Shaanxi Key Laboratory of Prevention and Control Technology for Coal Mine Water Hazard;Environmental Impact Assessment Institute,Shaanxi Modern Architectural Design & Research Institute;
  • 关键词:复合地层富水性分区 ; 含水煤层 ; 多源空间信息融合 ; 袁大滩煤矿
  • 英文关键词:water abundance zoning of composite layer;;water-bearing coal seam;;multi-source spatial information fusion;;Yuandatan coal mine
  • 中文刊名:MDKT
  • 英文刊名:Coal Geology & Exploration
  • 机构:中煤科工集团西安研究院有限公司矿山灾害防治与环境治理技术研发中心;陕西省煤矿水害防治技术重点实验室;陕西省现代建筑设计研究院环评所;
  • 出版日期:2019-02-25
  • 出版单位:煤田地质与勘探
  • 年:2019
  • 期:v.47;No.271
  • 基金:国家重点研发计划项目(2017YFC0804103);; 国家自然科学基金项目(41807221);; 陕西省自然科学基础研究计划项目(2018JQ5150);; 中煤科工集团西安研究院有限公司科技创新基金项目(2017XAYMS07,2015XAYMS21)~~
  • 语种:中文;
  • 页:MDKT201901017
  • 页数:7
  • CN:01
  • ISSN:61-1155/P
  • 分类号:118-124
摘要
侏罗系煤田煤层开采普遍受到顶板复合含水层水影响。选取陕北榆横矿区袁大滩煤矿2煤开采顶板复合砂岩地层为研究对象,基于经验公式和实测公式,计算导水裂缝带发育高度,确定2煤至直罗组顶界为富水性分区范围;选取评价层段砂岩等效厚度、砂–泥互层特征等7个岩性结构指标,重点考虑2煤含水性特征,计算了各钻孔位置富水性综合指数,借助Arcgis软件,绘制了研究区富水性分区图,揭示区内富水性从西北向东南递减,与区域富水性背景一致。研究结果对于富水性指数法在煤层含水条件下的应用有推动作用。
        Coal mining in Jurassic coalfield is generally threatened by roof water. The composite sandstone of No.2 coal seam in Yuandatan coal mine located at North Shaanxi was selected as research object, and the development height of water-conducting fracture zone was calculated using the empirical formula and measurement formula respectively, based on the calculated results, it was determined that the range for water abundance zoning was from the No.2 coal seam to the top boundary of Zhiluo Formation. According to the previous studies, we selected seven factors such as the equivalent thickness of sandstone, the property of interbed of sandstone and mudstone, the water content of the No.2 coal seam, the unit water inflow, the permeability coefficient, the core-recovery, and the thickness ratio of brittle and plastic rock to calculate the comprehensive water abundance index at borehole location.The zoning plan of water abundance in the study area was generated using the Arcgis software, and the plan indicated that the water abundance decreased gradually from the northwest to the southeast and was consistent with the regional background value. The research results have positive effect for the application of the water abundance index method in the conditions of water-bearing coal seam.
引文
[1]虎维岳,田干.我国煤矿水害类型及其防治对策[J].煤炭科学技术,2010,38(1):92-96.HU Weiyue,TIAN Gan.Mine water disaster type and prevention and control countermeasures in China[J].Coal Science and Technology,2010,38(1):92-96
    [2]武强,樊振丽,刘守强,等.基于GIS的信息融合型含水层富水性评价方法-富水性指数法[J].煤炭学报,2011,36(7):1124-1128.WU Qiang,FAN Zhenli,LIU Shouqiang,et al.Water-richness evaluation method of water-filled aquifer based on the principle of information fusion with GIS:Water-richness index method[J].Journal of China Coal Society,2011,36(7):1124-1128.
    [3]卜庆林,陈成星,杨成超,等.煤层顶板岩层富水性分区指标及其涌水量预测[J].山东科技大学学报(自然科学版),2005,24(3):28-31.BU Qinglin,CHEN Chengxing,YANG Chengchao,et al.Zoning index of rich water-bearing roof strata and water inrush forecasting in coal seams[J].Journal of Shandong University of Science and Technology(Natural Science),2005,24(3):28-31.
    [4]石守桥,魏久传,尹会永,等.济三煤矿煤层顶板砂岩含水层富水性预测[J].煤田地质与勘探,2017,45(5):100-104.SHI Shouqiao,WEI Jiuchuan,YIN Huiyong,et al.Forecasting of water abundance of coal roof sandstone aquifer in Jining No.3 mine[J].Coal Geology&Exploration,2017,45(5):100-104.
    [5]赵宝峰.基于含水层沉积和构造特征的富水性分区[J].中国煤炭地质,2015,27(4):30-34.ZHAO Baofeng.Water yield property zoning based on aquifer sedimentary and structural features[J].Coal Geology of China,2015,27(4):30-34.
    [6]邱梅,施龙青,滕超,等.基于灰色关联-FDAHP法与物探成果相结合的奥灰富水性评价[J].岩石力学与工程学报,2016,35(增刊1):3203-3213.QIU Mei,SHI Longqing,TENG Chao,et al.Water-richness evaluation of ordovician limestone based on grey correlation analysis,FDAHP and geophysical exploration[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(S1):3203-3213.
    [7]武强,王洋,赵德康,等.基于沉积特征的松散含水层富水性评价方法与应用[J].中国矿业大学学报,2017,46(3):460-466.WU Qiang,WANG Yang,ZHAO Dekang,et al.Water abundance assessment method and application of loose aquifer based on sedimentary characteristics[J].Jounral of China University of Mining&Technology,2017,46(3):460-466.
    [8]刘士毅,田黔宁,赵金水,等.解决物探异常解释多解性的一次尝试[J].物探与化探,2010,34(6):691-696.LIU Shiyi,TIAN Qianning,ZHAO Jinshui,et al.An attempt to reduce ambiguity in geophysical interpretation[J].Geophysical&Geochemical Exploration,2010,34(6):691-696.
    [9]杨建,梁向阳,丁湘.蒙陕接壤区深埋煤层开发过程中矿井涌水量变化特征[J].煤田地质与勘探,2017,45(4):97-101.YANG Jian,LIANG Xiangyang,DING Xiang.Variation characteristics of mine inflow during mining of deep buried coal seams in Shaanxi and Inner Mongolia contiguous area[J].Coal Geology&Exploration,2017,45(4):97-101.
    [10]杨建.蒙陕接壤区深埋型煤层顶板水文地质及水文地球化学特征[J].煤矿安全,2016,47(10):176-179.YANG Jian.Hydrogeological and hydrogeochemical characteristics of deep buried coal seam roof in Shaanxi and Inner Mongolia contiguous area[J].Safety in Coal Mines,2016,47(10):176-179.
    [11]SAATY T L.The analytic hierarchy process[M].[S.l.]:Mc GrawHill,NYC,1980:10-20.
    [12]王世文.陕北某煤矿矿坑涌水量预测[D].石家庄:石家庄经济学院,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700