云南巍山笔架山锑矿床辉锑矿稀土微量元素特征及其矿床成因意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:CHARACTERISTICS OF RARE EARTH AND TRACE ELEMENTS OF STIBNITE FROM THE BIJIASHAN ANTIMONY DEPOSIT,SOUTHWEST YUNNAN:IMPLICATIONS FOR ORE GENESIS
  • 作者:肖昌浩 ; 李龚健 ; 刘欢 ; 梁坤
  • 英文作者:XIAO Chang-hao;LI Gong-jian;LIU Huan;LIANG Kun;Institute of Geomechanics,Chinese Academy of Geological Sciences;State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences;Institute of Mineral Resources,Chinese Academy of Geological Sciences;
  • 关键词:笔架山锑矿 ; 矿石组构 ; ICP-MS ; 矿床成因 ; 低温热液矿床
  • 英文关键词:the Bijiashan antimony deposit;;ore fabric;;ICP-MS;;ore genesis;;epithermal deposit
  • 中文刊名:DZLX
  • 英文刊名:Journal of Geomechanics
  • 机构:中国地质科学院地质力学研究所;中国地质大学地质过程与矿产资源国家重点实验室;中国地质科学院矿产资源研究所;黑龙江省第四地质勘察院;
  • 出版日期:2016-06-15
  • 出版单位:地质力学学报
  • 年:2016
  • 期:v.22
  • 基金:地质力学研究所基本科研业务费项目(DZLXJK201505);; 国家重点基础研究发展规划(973)项目(2015CB452606,2009CB421008);; 国土资源部公益性行业科研专项(201411024-3)
  • 语种:中文;
  • 页:DZLX201602011
  • 页数:15
  • CN:02
  • ISSN:11-3672/P
  • 分类号:129-143
摘要
以笔架山锑矿床为研究对象,在矿床精细解剖基础上,利用辉锑矿金属矿物ICP-MS分析,指示成矿流体来源和性质。研究结果显示,辉锑矿轻稀土强烈富集,分馏程度高,Tb、Dy、Eu呈显著的正异常,显著的正异常稀土配分模式,与喜马拉雅期富碱斑岩的稀土配分模式具有相似性。此外,辉锑矿矿物以其强Sr和Ba正异常的微量元素特征,与喜马拉雅期富碱斑岩中高含量Sr和Ba的特征一致。辉锑矿矿物的Y/Ho比值变化较大,其比值随辉锑矿的氧化程度增大和产出海波高度增高而逐渐增大。对比不同流体系统的Y/Ho比值发现氧化程度较大和海拔较高的辉锑矿Y/Ho比值与现代海水的Y/Ho比值接近,氧化程度较低的辉锑矿Y/Ho比值与莲花山岩体Y/Ho比值接近,指示成矿流体可能是岩浆与大气降水不同程度的混和。H-O同位素研究显示出成矿热液来源于岩浆水和大气降水的混合。Pb同位素显示壳、幔源多源铅的特征。S同位素表明辉锑矿的S主要为生物与岩浆热液来源硫的混合。综合研究认为,该矿床是一个受层间构造破碎带控制的位于岩浆远端的低温热液矿床。
        Taking the Bijiashan antimony deposit as the research object,we reveal the source and nature of ore-forming fluid using ICP-MS analysis of stibnite based on the fine dissection of ore deposits. The REE patterns of stibnite show enrichment of LREE with the intense fractionation,with obvious Tb and Dy positive anomaly and Eu positive anomaly,which is similar with the REE patterns of the Himalayan alkali-rich porphyry. Furthermore,the characteristics of strongly Sr and Ba positive anomaly in the trace element of stibnite,is consistent with that of the Himalayan alkalirich porphyry. The Y / Ho ratios of stibnite increase along with the increase of altitude and degree of oxidation. The Y / Ho ratios of stibnite with high degree of oxidation is similar with the Y / Ho ratios of sea water and the Y / Ho ratios of stibnite with low degree of oxidation is similar with the Y / Ho ratios of the Lianhuashan alkali-rich porphyry,which suggests that ore-forming fluid may be from the mixture of magmas and atmospheric water and that is also supported by H-O isotope study. Isotope analysis reveals that Pb is from multiple sources and S of stibnite is a mixture of biological sulfur and magmatic sulfur. Results display that the deposit controlled by interformational fracture zone is an epithermal deposit which formed in distal volcanic settings.
引文
[1]俞国芬,薛步高,俞开基.云南锑(金)成矿带划分及有关成矿问题讨论[J].云南地质,2009,28(1):8~15.YU Guo-fen,XUE Bu-gao,YU Kai-ji.Thedivision of Sb(Au)metallogenetic zone and discussion of related metallogenetic problem of Yunnan[J].Yunnan Geology,2009,28(1):8~15.
    [2]范朝俊.云南巍山锑、汞多金属矿带成矿物质来源初探[J].地球化学,1991,4:399~405.FAN Chao-jun.A study on the origin of ore-forming materials in the antimony and mercury multiple-metal ore zone at Weishan,Yunnan Province,China[J].Geochimica,1991,4:399~405.
    [3]董芳浏.云南巍山—永平矿化集中区铜金多金属矿床成矿条件和成矿潜力研究[D].博士学位论文,北京:中国地质大学,2002,1~123.DONG Fang-liu.Study on metallogenic condition and potentiality of copper-gold-polymetallic deposits in Weishan-Yongping mineralization district,Yunnan[D].China University of Geosciences,Beijing,2002,1~123.
    [4]王勇.云南巍山—永平铜金多金属矿化集中区成矿流体特征及流体地质填图研究[D].博士学位论文,北京:中国地质大学,2002,1~136.WANG Yong.Study on the characteristics of metallogenic fluids and fluid-geological mapping in the Weishan-Yongping opper-gold-polymetallic mineralization district,Yunnan[D].Beijing:China University of Geoscience,2002.1~136.
    [5]常开永.云南巍山笔架山锑矿床成因.云南地质,2007,26(2):197~206.CHANG Kai-yong.On the genesis of Bijiashan Sb deposit in Weishan,Yunnan[J].Yunan Geology,2007,26(2):197~206.
    [6]肖昌浩.三江中南段低温热液矿床成矿系列研究[D].博士学位论文,北京:中国地质大学,2013,1~154.XIAO Chang-hao.The Study on Minerogenic Series of Epithermal Deposits in Mid-southern Segment of the Sanjiang Orogenic Belt,Southwest China[D].Beijing:China University of Geoscience,2013,1~154.
    [7]刘英俊,曹励明,李兆麟.元素地球化学[M].北京:地质出版社,1984,1~548.LIU Ying-jun,CAO Li-ming,LI Zhao-lin.Geochemistry of Element[M].geological publishing house,Beijing,2013,1~154.
    [8]ZHANG Qian.Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb-Zn ore deposits[J].Ore geology review,1987,39:188~217.
    [9]韩照信.秦岭泥盆系铅锌成矿带中闪锌矿的标型特征[J].西安地质学院学报,1994,16(1):12~17.HAN Zhao-xin.The typomorphic characteristic of the sphalerite in the qingling Devoniansystem lead-zinc metallogenic belt[J].Journal of Xi’an college of geology,1994,16(1):12~17.
    [10]BEAUDOIN Georges.Acicular sphalerite enriched in Ag,Sb,and Cu embedded within color banded sphalerite from the Kokanee Range,BC[J].Canadian Mineralogist,2000,38:1387~1398.
    [11]GASPAR Maria L,JESCH Stephen A,VISWANATHA Raghuvir,et al.A block in endoplasmic reticulum-to-Golgi trafficking inhibits phospholipid synthesis and induces neutral lipid accumulation[J].The Journal of Biological Chemistry,2008,283:25735~25751.
    [12]CAMPBELL AndrewR and ROBINSON-COOK Sylveen.Infrared fluid inclusion microthermometry on coexisting wolframite and quartz[J].Economic Geology,1987,82(6):1640~1645.
    [13]CAMPBELL AndrewR and PANTER KS.Comparison of fluid inclusions incoexisting(cogenetic?)wolframite,cassiterite,and quartz from St.Michael's Mount and Cligga Head,Cornwall,England[J].Geochimicaet Cosmochimica Acta,1990,54(3):673~681.
    [14]云南省地质矿产局,云南省区域地质志,地质出版社,1999,1~137.Bureau of geology and mineral resources in Yunnan Province,Regional geology of Yunnan Province,1999,1~137.
    [15]张红雨,苏犁,秦红,等.硫化物矿物中多组分元素ICP-MS测定方法研究[J].化学工程与技术,2012,2:67~72.ZHANG Hong-yu,SU Li,Qin Hong,LI Jiao,et al.Study of ICP-MS detection about trace elements and noble metal elements in sulfides[J].Hans Journal of Chemical Engineering and Technology,2012,2:67~72.
    [16]汪津津,胡煜昭,韩润生.贵州晴隆锑矿田微量元素地球化学特征及其对成矿流体的指示意义[J].矿物学报,2011,31(3):571~577.WANG Jin-jin,HU Yu-zhao,HAN Run-sheng.Geochemical characteristics and its implications of trace elements in Qinglong antimony deposit,Guizhou Province,China[J].Acta Mineralogica Sinica,2011,31(3):571~577.
    [17]戚学祥,李天福,于春林.藏南沙拉岗锑矿稀土和微量元素地球化学示踪及成矿物质来源[J].现代地质,2008,22(2):162~172.QI Xue-xiang,LI Tian-fu,YU Chun-lin.Rare earth element and trace element geochemistry of Shalagang antimony deposit in the Southern Tibet and Its tracing significancefor the origin of Metallogenic elements[J].Geoscience,2008.22(2):162~172.
    [18]张建芳.北喜马拉雅扎西康铅锌锑银矿床成因研究[D].武汉:中国地质大学,2010:1~96.ZHANG Jian-fang.The genesis study of Zhaxikang lead zinc antimony silver deposit,North Himalayan[D].Wuhan:China University of Geoscience,2010:1~96.
    [19]BAU Michael.Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J].Chemical Geology,1991,93:219~230.
    [20]BAU Michael,DULSKI Peter.Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge:Implications for Y and REE behavior during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J].Chemical Geology,1999,155:77~90.
    [21]OUVILLE Eric,BIENVENU Philippe,Charlou Jean-luc,et al.Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J].Geochimica et Cosmochimica Acta,1999,63(5):627~643.
    [22]HAN F and Hutchinson R W.Evidence for the exhalative hydrothermal sedimentary origin of the Dachang Sn-polymetallic deposit-trace element and rare earth element geochemistry of the host rocks[J].Mineral Deposits,1989,8(3):33~44.
    [23]LARGE Ross R,BULL Stuart W,COOKE David R,et al.A genetic model for the HYC deposit,Australia:based on regional sedimentology,geochemistry,and sulfide-sediment relationship[J].Economic Geology,1998,93:1345~1368.
    [24]PARADIS Suzanne,NELSON Joanne L,IRWIN Steve E B.Age constraints on the Devonian shale-hosted Zn-Pb-Ba deposits,Gataga district,Northeastern British Columbia,Canada[J].Economic Geology,1998,93:184~200.
    [25]HELLMAN Phillip L,SMITH Raymond E and HENDERSON Paul.Themobility of the rare earth elements:Evidence and implicationsfrom selected terraines affected by burialmetamorphism[J].Contributions to Mineralogy and Petrology,1979,71:23~44.
    [26]FLEET A J.Aqueous and sedimentary geochemistry of the rare earth elements[C]//Henderson Ped.Rare earth element geochemistry.Amsterdam:Elsevier,1984:343~373.
    [27]BENCE A E,TAYLOR B E.Rare earth elementsystematics of West Shasta metavolcanic rocks:petrogenesisand hydrothermal alteration[J].Economical Geology,1985,80:2164~2176.
    [28]MACLEAN Wallace H.Rare earth element mobility atconstant inter-REE ratios in the alteration zone at the Phelps Dodge massive sulphide deposit,Matagami,Quebec[J].Mineral Deposita,1988,23:231~238.
    [29]LOTTERMOSER Bernd.Rare earth element and hydrothermal ore formation processes[J].Ore Geology Reviews,1992,7:25~41.
    [30]MILLS Rachel-ann,ELDERFIELD Henry.Rare earth element geochemistry ofhydrothermal deposits from the active TAG Mound,26°N Mid-Atlantic Ridge[J].Geochimica et Cosmochimica Acta,1995,59:3511~3524.
    [31]German C R,Klinkhammer G P,Edmond J M,et al.Hydrothermal scavenging of rare earth elementsin the ocean[J].Nature,1990,345:516~518.
    [32]MLLER Peter,PAREKH P P,and SCHNEIDER H J.The application of Tb/Ca-Tb/La abundance ratios to problems of Fluorspar Genesis[J].Mineral Deposita,1976,11:111~116.
    [33]KLINKHAMMER G-P,ELDERFIELD H,EDMOND J-M,MITRA A.Geochemicalimplications of rare earth element patterns in hydrothermal fluidsfrom mid-ocean ridges[J].Geochimica et Cosmochimica Acta,1994,58:5105~5113.
    [34]HAAS Jonson R,SHOCK Everett L,SASSANI David C.Rare earth elements inhydrothermal systems:estimates of standard partialmolalthermodynamic properties of aqueous complexes of the rare earthelements at high pressures and temperature[J].Geochimica et Cosmochimica Acta,1995,59:4329~4350.
    [35]PAPIKE J J,FOWLER G W,SHEARER C K,et al.Ionmicroprobe investigation of plagioclase and orthopyroxene fromlunar Mg-suite norites:Implications for calculating parental melt REE concentrations and for assessing postcrystallization REE redistribution[J].Geochimica et Cosmochimica Acta,1996,60(20):3967~3978.
    [36]SHANNON Robert D.Revised effective ionic radii and systematic studies ofinteratomic distances in halides and chalcogenides[J].Acta Cryst,1976,A32:751~767.
    [37]王勇,侯增谦,莫宣学,等.云南巍山—永平碰撞造山带走滑拉分盆地铜金多金属成矿流体系统:稳定同位素特征及热液来源[J].矿床地质,2006,25(1):60~70.WANG Yong,HOU Zeng-qian,MO Xuan-xue,et al.Stable isotope characteristics and origin of ore-forming fluids in copper-goldpolymetallic deposits within strike-slip pull-apart basin of Weishan-Yongping continental collision orogenic belt,Yunnan Province,China[J].Mineral Deposits,2006,25(1):60~70.
    [38]侯增谦,宋玉财,李政,等.青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型[J].矿床地质,2008,27(2):420~441.HOU Zeng-qian,SONG Yu-cai,LI Zheng,et al.Thrust-controlled,sediments-hosted Pb-Zn-Ag-Cu deposits in eastern and northernmargins of Tibetan orogenic belt:Geological features and tectonic model[J].Mineral Deposits,2008,27(2):420~441.
    [39]LEACH DL,SANGSTERDF,KELLEY KD,et al.Sediment-hosted lead-zincdeposits:A global perspective[J].Economic Geology,2005,100:561~607.
    [40]DENG Jun,WANG Qing-fei,LI Gong-jian,et al.Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiangregion,SW China[J].Gondwana Research,2014a,26(2):419~437.
    [41]DENG Jun,WANG Qing-fei,SANTOSH M.Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region,southwestern China[J].Earth-Science Reviews,2014b,138:268~299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700