壳聚糖基固体酸催化果糖合成5-羟甲基糠醛
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Chitosan-derived Solid Acid as a Catalyst for Fructose Dehydration into 5-Hydroxymethylfurural
  • 作者:杨莎莎 ; 张江华 ; 李红艳 ; 蔡伟杰 ; 阴法文 ; 崔励 ; 蔡迪迪 ; 周大勇
  • 英文作者:YANG Sha-sha;ZHANG Jiang-hua;LI Hong-yan;CAI Wei-jie;YIN Fa-wen;CUI Li;CAI Di-di;ZHOU Da-yong;College of Light Industry and Chemical Engineering, Dalian Polytechnic University;National Engineering Research Center of Seafood, Dalian Polytechnic University;State Key Laboratory of Fine Chemicals, Dalian University of Technology;Pharmaceutical College, Liaoning University of Traditional Chinese Medicine;
  • 关键词:壳聚糖 ; 5-羟甲基糠醛 ; 果糖 ; 固体酸 ; 无溶剂 ; 催化技术
  • 英文关键词:chitosan;;5-hydroxymethylfurfural;;fructose;;solid acid;;solvent-free;;catalysis technology
  • 中文刊名:JXHG
  • 英文刊名:Fine Chemicals
  • 机构:大连工业大学轻工与化学工程学院;大连工业大学国家海洋食品工程技术研究中心;大连理工大学精细化工国家重点实验室;辽宁中医药大学药学院;
  • 出版日期:2019-08-09
  • 出版单位:精细化工
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(31801546);; 中国博士后科学基金资助项目(2017M621119);; 辽宁省自然科学基金计划重点项目(20170520220);; 国家重点研发计划课题(2017YFB0308701);; 大连理工大学精细化工国家重点实验室开放课题基金项目(KF1416)
  • 语种:中文;
  • 页:JXHG201908016
  • 页数:7
  • CN:08
  • ISSN:21-1203/TQ
  • 分类号:97-103
摘要
以壳聚糖为原料,采用一步水热碳化和磺化法合成壳聚糖基固体酸材料(CASA),并将其用于催化无溶剂条件下果糖脱水合成5-羟甲基糠醛(5-HMF),考察了催化剂用量、反应温度、反应时间及催化剂循环利用次数对脱水反应的影响,并与甲壳素基固体酸材料(CISA)进行了催化性能比较。采用X射线衍射、扫描电镜、吡啶吸附红外光谱对CASA材料进行了结构和酸性质表征,建立了催化剂结构与性能的关系。结果表明,CASA材料含有大量的表面强Br?nsted酸性位点,因而其催化性能较CISA突出;当m(果糖)∶m(CASA)=6∶1、120℃反应5 h时,5-HMF的收率高达63.2%,且CASA可重复利用4次而无明显失活。
        A kind of chitosan-derived solid acid(CASA) material was successfully synthesized via in situ partially hydrothermal carbonization followed by sulfonation with chitosan as raw materials. Subsequently,the CASA material was used for catalytic fructose dehydration to 5-hydroxymethylfurfural(5-HMF) under solvent-free conditions. The effects of catalyst amount, reaction temperature, reaction time and catalyst recyclability on the dehydration were studied in detail. Meanwhile, its catalytic activity was compared with that of chitin-derived solid acid(CISA) material. The obtained CASA material was characterized by various techniques, such as X-ray diffraction, scanning electron microscopy and infrared spectra of pyridine adsorption. A relationship between the catalyst structure and properties was established. The results suggested that there were a lot of strong Br?nsted acid sites on the CASA surface. Therefore, its catalytic performance was more outstanding than that of CISA. The 5-HMF yield was up to 63.2% at 120 ℃ within 5 h when the mass ratio of fructose to CASA material was 6∶1. Moreover, the CASA catalyst could be recycled up to 4 times without any obvious deactivation.
引文
[1]Hayashi E,Yamaguchi Y,Kamata K,et al.Effect of Mn O2 crystal structure on aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid[J].Journal of the American Chemical Society,2019,141(2):890-900.
    [2]Jia Jin(贾进),Cheng Lu(程璐),Zhang Cheng(张澄),et al.One-pot catalytic preparation of 5-hydroxymethylfurural from glucose on mesoporous niobium phosphate[J].Fine Chemicals(精细化工),2018,35(2):255-260.
    [3]Morales-Leal F,de la Rosa J R,Lucio-Ortiz C,et al.Dehydration of fructose over thiol-and sulfonic-modified alumina in a continuous reactor for 5-HMF production:Study of catalyst stability by NMR[J].Applied Catalysis B:Environmental,2019,244:250-261.
    [4]Huang F,Li W,Liu Q,et al.Sulfonated tobacco stem carbon as efficient catalyst for dehydration of C6 carbohydrate to5-hydroxymethylfurfural inγ-valerolactone/water[J].Fuel Processing Technology,2018,181:294-303.
    [5]Cao Z,Li M,Chen Y,et al.Dehydration of fructose into5-hydroxymethylfurfural in a biphasic system using EDTA as a temperature-responsive catalyst[J].Applied Catalysis A:General,2019,569:93-100.
    [6]Choudhary V,Mushrif S H,Ho C,et al.Insights into the interplay of Lewis and Br?nsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media[J].Journal of the American Chemical Society,2013,135(10):3997-4006.
    [7]Wang L,Zhang L,Li H,et al.High selective production of5-hydroxymethylfurfural from fructose by sulfonic acid functionalized SBA-15 catalyst[J].Composites Part B:Engineering,2019,156:88-94.
    [8]Hara M,Yoshida T,Takagaki A,et al.A carbon material as a strong protonic acid[J].Angewandte Chemie International Edition,2004,43:2955-2958.
    [9]Kitanosono T,Masuda K,Xu P,et al.Catalytic organic reactions in water toward sustainable society[J].Chemical Reviews,2018,118(2):679-746.
    [10]Zhang J,Yang S,Zhang Z,et al.An excellent solid acid catalyst derived from microalgae residue for fructose dehydration into5-hydroxymethylfurural[J].Chemistry Select,2019,4(4):1259-1265.
    [11]Gan L,Lyu L,Shen T,et al.Sulfonated lignin-derived ordered mesoporous carbon with highly selective and recyclable catalysis for the conversion of fructose into 5-hydroxymethylfurfural[J].Applied Catalysis A:General,2019,574:132-143.
    [12]Cheng Lu(程璐),Xie Xiang(谢翔),Jia Jin(贾进),et al.Research on whitening and antisenility efficacy of saponins from sea cucumber cooking water[J].Fine Chemicals(精细化工),2018,35(2):267-271.
    [13]Yu H,Kim K,Kang M J,et al.Carbon support with tunable porosity prepared by carbonizing chitosan for catalytic oxidation of5-hydroxylmethylfurfural[J].ACS Sustainable Chemistry&Engineering,2019,7(4):3742-3748.
    [14]Suganuma S,Nakajima K,Kitano M,et al.Hydrolysis of cellulose by amorphous carbon bearing SO3H,COOH,and OH groups[J].Journal of the American Chemical Society,2008,130(38):12787-12793.
    [15]Shaikh M,Sahu M,Atyam K K,et al.Surface modification of ferrite nanoparticles with dicarboxylic acids for the synthesis of5-hydroxymethylfurfural:A novel and green protocol[J].RSC Advances,2016,6(80):76795-76801.
    [16]Wang J,Xu W,Ren J,et al.Efficient catalytic conversion of fruc tose into hydroxymethylfurfural by a novel carbon-based solid acid[J].Green Chemistry,2011,13(10):2678-2681.
    [17]Foo G S,Sievers C.Synergistic effect between defect sites and functional groups on the hydrolysis of cellulose over activated carbon[J].Chem Sus Chem,2015,8(3):534-543.
    [18]Guo H,Lian Y,Yan L,et al.Cellulose-derived superparamagnetic carbonaceous solid acid catalyst for cellulose hydrolysis in an ionic liquid or aqueous reaction system[J].Green Chemistry,2013,15(8):2167-2174.
    [19]Qi X,Yan L,Shen F,et al.Mechanochemical-assisted hydrolysis of pretreated rice straw into glucose and xylose in water by weakly acidic solid catalyst[J].Bioresource Technology,2019,273:687-691.
    [20]Rihko-Struckmann L K,Molnar M,Pirwitz K,et al.Recovery and separation of carbohydrate derivatives from the lipid extracted alga Dunaliella by mild liquefaction[J].ACS Sustainable Chemistry&Engineering,2017,5(1):588-595.
    [21]Kumar G,Shobana S,Chen W,et al.A review of thermochemical conversion of microalgal biomass for biofuels:chemistry and processes[J].Green Chemistry,2017,19(1):44-67.
    [22]Thapa I,Mullen B,Saleem A,et al.Efficient green catalysis for the conversion of fructose to levulinic acid[J].Applied Catalysis A:General,2017,539:70-79.
    [23]Emeis C A.Determination of integrated molar extinction coeffi cients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J].Journal of Catalysis,1993,141(2):347-354.
    [24]Thombal R,Jadhav V.Biomass derivedβ-cyclodextrin-SO3Hcarbonaceous solid acid catalyst for catalytic conversion of carbohydrates to 5-hydroxymethylfurfural[J].Applied Catalysis A:General,2015,499:213-216.
    [25]Qiu G,Wang X,Huang C,et al.Niobium phosphotungstates:excellent solid acid catalysts for the dehydration of fructose to5-hydroxymethylfurfural under mild conditions[J].RSC Advances,2018,8(57):32423-32433.
    [26]De S,Dutta S,Saha B,et al.Microwave assisted conversion of carbohydrates and biopolymers to 5-hydroxymethylfurfural with aluminium chloride catalyst in water[J].Green Chemistry,2011,13(10):2859-2868.
    [27]Ordomsky V V,vander Schaaf J,Schouten J C,et al.Fructose dehydration to 5-hydroxymethylfurfural over solid acid catalysts in a biphasic system[J].Chem Sus Chem,2012,5(9):1812-1819.
    [28]Gaidukevi?J,Barkauskas J,Malaika A,et al.Modified gra phene-based materials as effective catalysts for transesterification of rapeseed oil to biodiesel fuel[J].Chinese Journal of Catalysis,2018,39(10):1633-1645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700