南极普里兹湾可培养浮游细菌群落结构研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:COMMUNITY COMPOSITION OF ANTARCTIC BACTERIOPLANKTON ISOLATED FROM THE PRYDZ BAY,ANTARCTICA
  • 作者:吴月红 ; 韩正兵 ; 张心齐 ; 周亚东 ; 吴敏 ; 许学伟
  • 英文作者:Wu Yuehong;Han Zhengbing;Zhang Xinqi;Zhou Yadong;Wu Min;Xu Xuewei;Laboratory of Marine Ecosystem and Biogeochemistry of State Oceanic Administration;State Oceanic Administration;College of Life Sciences,Zhejiang University;
  • 关键词:南极 ; 普里兹湾 ; 细菌 ; 多样性
  • 英文关键词:Antarctic,Prydz Bay,bacteria,biodiversity
  • 中文刊名:JDYZ
  • 英文刊名:Chinese Journal of Polar Research
  • 机构:国家海洋局海洋生态系统与生物地球化学重点实验室;国家海洋局第二海洋研究所;浙江大学生命科学学院;
  • 出版日期:2014-06-15
  • 出版单位:极地研究
  • 年:2014
  • 期:v.26
  • 基金:国家海洋局极地科学重点实验室开放研究基金(20100216);; 海洋二所基本科研业务费专项资金项目(JT1011)资助
  • 语种:中文;
  • 页:JDYZ201402006
  • 页数:8
  • CN:02
  • ISSN:31-1744/P
  • 分类号:50-57
摘要
针对南极普里兹湾内达恩利角附近海域的3个测站共12份海水样品,采用寡营养培养基分离培养极地浮游细菌,通过PCR方法获取其中95株细菌的16S rRNA基因序列。序列分析结果表明,分离获得的95株细菌分属α-变形杆菌纲(Alphaproteobactia)、γ-变形杆菌纲(Gammaproteobacteria)和拟杆菌门(Bacteroidetes)3个类群下的35个不同分类单元,其中α-变形杆菌纲为优势细菌,在不同水层中所占的比例为52.6%—62.5%。通过Shannon多样性指数分析发现,南极普里兹湾陆架区测站P2-14多样性指数较陆坡区两测站P2-11和P2-8的高,细菌多样性与浮游植物量和生产力水平呈现正相关。表层细菌Shannon多样性指数最低,50 m水层最高,100和200 m水层多样性指数变化不明显,真光层水体中细菌垂直分布与营养盐和溶解氧浓度存在关联。此外,采用寡营养陈海水培养基,还获得了一些与已报道的16S rRNA基因序列相似性较低的菌株,它们代表了微生物新物种,可能也是南极真光层特有的细菌。研究工作表明,南极普里兹湾真光层水体中蕴藏着丰富的浮游细菌资源,它们有待保护、开发和利用。
        We collected 12 sea water samples from three stations in Prydz Bay,near Cape Darnley,Antarctica.Based on the oligographic media,95 strains of Antarctic bacterioplankton were isolated in total.The 16S rRNA gene sequences were determined and analyzed.The isolates fell into three lineages:Alphaproteobactia,Gammaproteobacteria and Bacteroidetes.The sequences were assigned to 35 operational taxonomic units(OTUs) based on the sequence analysis.The results showed that Alphaproteobactia was the dominant bacterial group and the proportions were 52.6% —62.5% in the different layers.Analysis using the Shannon diversity index indicated that station P2-14 index,located on the continental shelf,was higher than that of stations P2-11 and P2-8 located on the slope.There was a positive correlation between the bacteria diversity and biomass as well as productivity of phytoplankton.The Shannon diversity index of the surface was the lowest,and that of the 50-m layer the highest.There was no difference in the Shannon diversity index between the 100-m and 200-m layers.The vertical distribution of bacteria was correlated with the nutrient and dissolved oxygen concentrations.In addition,some strains isolated from oligographic media showed low affiliation with the sequences from the described species(less than 97%),suggesting the presence of some novel taxa and specific strains in the Antarctic euphotic layer.Therefore,as shown by this study,the bacterioplankton resources in the Antarctic euphotic layer are rich.The numerous unknown microorganisms should be studied further and explored as a valuable resource.
引文
1 Giudice A L,Caruso C,Mangano S,et al.Marine bacterioplanktondiversity and community composition in an antarcticcoastal environment.Microbial Ecology,2012,63(1):210—223.
    2 Yu Y,Li H R,Zeng Y X,et al.Antarctica gen.nov.,sp.Nov.,a member of the family Flavobacteriaceae,isolated from Antarctic intertidal sediment.International Journal of Systematic and Evolutionary Microbiology,2012,62(9):2218—2223.
    3 Sait M,Hugenholtz P,Janssen P H.Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivationindependent surveys.Environmental Microbiology,2002,4(11):654—666.
    4 Ye J Y,Luo G Y.Ecological interpretation and related strategies for low culturability of microorganisms.Acta Microbiologica Sinica,2005,45(3):478 —482.
    5 蔡昱明,宁修仁,朱根海,等.南极普里兹湾浮游植物现存量与初级生产力粒级结构和新生产力研究.海洋学报,2005,27(4):135—147.
    6 Tupas L,Koike I.Amino acid and ammonium utilization by heterotrophic marine bacteria growth in enriched seawater.Limnol Oceanogr,1990,35(5):1145—1155.
    7 Cotner J B,Ammerman J W,Peele E R,et al.Phosphorus-limited bacterioplankton growth in the Sargasso Sea.Aquatic Microbial Ecology,1997,13 :141—149.
    8 韩正兵,潘建明,扈传昱,等.南极普里兹湾真光层下水体中有机碳和无机碳分解比例的估算.极地研究,2010,22(3):254—261.
    9 Zeng Y X,Li H R,Yu Y,et al.Phylogenetic diversity and phenotypic characterization of cultivable bacterioplankton isolated from polar oceans.Acta Oceanologica Sinica,2007,26(4):93—103.
    10 Pukall R,Buntefuss D,Frühling A,et al.Sulfitobacter mediterraneus sp.nov.,a new sulfite-oxidizing member of the alpha-Proteobacteria.International Journal of Systematic Bacteriology,1999,49(2):513—519.
    11 龙聪,刘小宇,卢小玲,等.海洋亚硫酸杆菌M44的代谢产物研究.中国抗生素杂志,2012,37(4):254—257.
    12 Uphoff H U,Felske A,Fehr W,et al.The microbial diversity in picoplankton enrichment cultures:a molecular screening of marine isolates.FEMS Microbiology Ecology,2001,35(3):249—258.
    13 Ravenschlag K,Sahm K,Pernthaler J,et al.High bacterial diversity in permanently cold marine sediments.Applied and Environmental Microbiology 1999,65(9):3982—3989.
    14 Xu X W,Wu Y H,Wang C S,et al.Marinobacter pelagius sp.nov.,a moderately halophilic bacterium.International Journal of Systematic and Evolutionary Microbiology,2008,58(3):637—640.
    15 Kasai Y,Kishira H,Sasaki T,et al.Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water.Environmental Microbiology,2002,4(3):141—147.
    16 Hara A,Syutsubo K,Harayama S.Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation.Environmental Microbiology,2003,5(9):746—753.
    17 Cappello S,Denaro R,Genovese M,et al.Predominant growth of Alcanivorax during experiments on“oil spill bioremediation”in mesocosms.Microbiological Research,2007,162(2):185—190.
    18 Gómez-Pereira P R,Fuchs B M,Alonso C,et al.Distinct flavobacterial communities in contrasting water masses of the North Atlantic Ocean.The ISME Journal,2010,4(4):472—487.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700