基于对流换热的低温空化流动数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Study of Cryogenic Cavitation Based on Convection Heat Transfer
  • 作者:项乐 ; 谭永华 ; 陈晖 ; 李雨濛
  • 英文作者:XIANG Le;TAN Yong-hua;CHEN Hui;LI Yu-meng;Science and Technology on Liquid Rocket Engine Laboratory,Xi'an Aerospace Propulsion Institute;Academy of Aerospace Propulsion Technology;
  • 关键词:低温 ; 空化模型 ; 热力学效应 ; 对流换热
  • 英文关键词:Cryogenic;;Cavitation model;;Thermodynamic effect;;Convection heat transfer
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:西安航天动力研究所液体火箭发动机技术重点实验室;航天推进技术研究院;
  • 出版日期:2019-01-29 18:18
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.264
  • 基金:国家重大基础研究项目(613321)
  • 语种:中文;
  • 页:TJJS201906014
  • 页数:10
  • CN:06
  • ISSN:11-1813/V
  • 分类号:120-129
摘要
为了考虑低温介质的热力学效应对空化发展的影响,基于气泡表面对流换热平衡建立了温降与气泡生长的关系,引入夹带理论估计了对流换热系数,并对一种输运型空化模型进行修正,将修正后的空化模型以二次开发的形式嵌入至商业软件中,同时引入能量方程源项以及物性参数随温度变化关系,对二维翼型表面空化流动进行数值仿真,通过与实验结果的对比,发现计算结果与实验结果符合较好,修正后的空化模型能够更好地预测空化区内温度的分布,最大温降偏差由62.18%降低至7.14%,平均温度偏差由0.59%降低至0.28%。考虑热效应之后,空化区主要由气液混合组成,来自主流的液体一部分经对流传递至空化区,一部分在翼型头部和气液界面处发生空化形成蒸汽,导致空化区气相体积分数显著减小,空化区与主流之间的界面变得模糊,最大温降和压降均发生在翼型头部位置。
        In order to considering the thermodynamic effect on cryogenic cavitation,a relationship betweentemperature depressions and bubble growth was built based on convection type heat equilibrium,in which theconvection heat transfer coefficient was estimated using the entrainment theory. Then a transport-based cavitationmodel was extended,and embedded in commercial CFD software,together with energy source and thermodynam-ic properties which were specified as the function of temperature. Numerical simulation of cavitation flow above a2 D foil surface was performed,it was found that the simulation results agreed with experiment results well,theextended cavitation model could predict the temperature distribution inside the cavity better,the max tempera-ture depression error is reduced to 7.14% from 62.18%,the average temperature error is reduced to 0.28% from0.59%. After taking the thermal effect into account,the cavity is mainly composed of vapor and liquid,part of liq-uid coming from main flow transfer into the cavity through convection,the other part vaporize near the head of foiland the interface,resulting in that vapor volume fraction decrease remarkably in the cavity,the interface betweencavity and main flow become indistinct. The max temperature/pressure depression is located in the leading regionof the cavity.
引文
[1]陈晖,李斌,张恩昭,等.液体火箭发动机高转速诱导轮旋转空化[J].推进技术,2009,30(3):1-5.(CHEN Hui,LI Bin,ZHANG En-zhao,et al. Geometry Design and Analysis of the High-Speed Rotational Plate Inducer[J]. Journal of Propulsion Technology,2009,30(3):1-5.)
    [2] Robert S Ruggeri,Royce D Moore. Method for Prediction of Pump Cavitation Performance for Various Liquids,Liquid Temperature and Rotative Speeds[R]. NASATN-D-5292,1969.
    [3] Robert S Ruggeri,Royce D Moore. Prediction of Thermodynamic Effects of Developed Cavitation Based on Liquid-Hydrogen and Freon 114 Data in Scaled Venturis[R]. NASA-TN-D-4899,1968
    [4] George Kovich. Comparison of Predicted and Experimental Cavitation Performance of 84°Helical Inducer in Water and Hydrogen[R]. NASA-TN-D-7016,1970.
    [5] Hord. Cavitation in Liquid Cryogen II[R]. NASA-CR-2156,1974.
    [6] Billet M L,Weir D S. Correlations by the Entrainment Theory of Thermodynamic Effects for Development Cavitation in Venturis and Comparisons with Ogive Data[R].NASA-TM-75-291,1975.
    [7] Billet M L,Weir D S. Thermodynamic Effects on Developed Cavitation[J]. Journal of Fluids Engineering,1975,97(4):507-513.
    [8]姜映福,刘忠祥,褚宝鑫.低温流体汽蚀的数值计算及可视化实验研究[J].推进技术,2017,38(12):2771-2777.(JIANG Ying-fu,LIU Zhong-xiang,CHU Bao-xin,et al. Numerical Simulation and Visualized Experimental Study on Cavitating of Cryogenic Fluids[J].Journal of Propulsion Technology,2017,38(12):2771-2777.)
    [9] Wei Shyy. Turbulence Modeling for Isothermal and Cryogenic Cavitation[C]. Orlando:47th AIAA Aerospace Sciences Meeting,2009.
    [10] Merkle C L,Feng J,Buelow P E O. Computational Modeling of Dynamics of Sheet Cavitation[C]. Grenoble:Proceedings of the 3rd International Symposium on Cavitation,1998.
    [11] Naoki T,Shin-ichi T,Nobuhiro Y. Development and Validation of New Cryogenic Cavitation Model for Rocket Turbopump Inducer[C]. Ann Arbor:Proceedings of the7th International Symposium on Cavitation,2009.
    [12] Franc J P. Analysis of Thermal Effects in a Cavitating Inducer Using Rayleigh Equation[J]. Journal of Fluids Engineering,2007,129(8):974-983.
    [13] Zhang xiaobin. Validation of Full Cavitation Model in Cryogenic Fluids[J]. Chinese Science Bulletin,2009,54(10):1633-1640.
    [14] Singhal A K,Athavale M M,Li H Y,et al. Mathematical Basis and Validation of the Full Cavitation Model[J].Journal of Fluids Engineering,2002,124(3):617-624.
    [15]孙铁志.热力学敏感流体空化流动三维数值模拟研究[D].哈尔滨:哈尔滨工业大学,2010.
    [16]时素果,王国玉.一种修正的低温流体空化流动计算模型[J].力学学报,2012,44(2):269-277.
    [17] Tairan Chen. Numerical Study of Cavitating Flows in a Wide Range of Water Temperatures with Special Emphasis on Two Typical Cavitation Dynamics[J]. International Journal of Heat and Mass Transfer,2016,101(1):886-900.
    [18] Angelo Cervone. Thermal Cavitation Experiments on a NACA0015 Hydrofoil[J]. Journal of Fluids Engineering,2006,128(2):326-331.
    [19]王国玉,陈泰然,黄彪,等.液氢空化流动特性研究[J].宇航总体技术,2017,1(1):27-33.
    [20] Ashvin Hosangadi. Numerical Study of Cavitation in Cryogenic Fluids[J]. Journal of Fluids Engineering,2005,127(2):267-281.
    [21] Coutier-Delgosha O,Fortes-Patella R,Rebound J L.Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavition[J]. Journal of Fluids Engineering,2003,125(1):38-45.
    [22] Johansen S T,Wu J,Shyy W. Filter-Based Unsteady RANS Computations[J]. International Journal of Heat and Fluid Flow,2004,25(1):10-21.
    [23] Shuhong Liu. A Mixture Model with Modified Mass Transfer Expression for Cavitating Turbulent Flow Simulation[J]. Engineering Computations, 2008, 25(4):290-304.
    [24] Billet M L,Holl J W. Correlations of Thermodynamics Effects for Developed Cavitation[J]. Journal of Fluids Engineering,2007,129(4):534-542.
    [25] Daniel H Fruman. Estimation of Thermal Effects in Cavitation of Thermosensible Liquids[J]. International Journal of Heat and Mass Transfer,1999,42(1):3195-3204.
    [26] Kamono H,Kato H. Simulation of Cavity Flow by Ventilated Cavitation on a Foil Section[C]. Washington:ASME Cavitation and Multiphase Flow Forum,1993.
    [27]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
    [28] Fruman D H,Benmansour I. Estimation of the Thermal Effects on Cavitation of Cryogenic Liquids[C]. Portland:ASME Cavitation and Multiphase Flow Forum,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700