4H-SiC MOS电容栅介质经NO退火电流导通机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Gate Leakage Current Conduction Mechanisms in NO Annealing and Dry Gate Oxides Grown on 4H-SiC
  • 作者:刘莉 ; 杨银堂
  • 英文作者:LIU Li;YANG Yin-tang;Microelectromics Academy,Xidian University;
  • 关键词:SiC ; MOS ; NO退火 ; 栅泄漏电流导通机理
  • 英文关键词:SiC MOS;;NO annealing;;gate leakage current conduction mechanisms
  • 中文刊名:BJLG
  • 英文刊名:Transactions of Beijing Institute of Technology
  • 机构:西安电子科技大学微电子学院;
  • 出版日期:2017-05-15
  • 出版单位:北京理工大学学报
  • 年:2017
  • 期:v.37;No.267
  • 基金:国家自然科学基金青年基金资助项目(JJ0500142501);国家自然科学基金重点资助项目(JJ0200122502)
  • 语种:中文;
  • 页:BJLG201705011
  • 页数:4
  • CN:05
  • ISSN:11-2596/T
  • 分类号:61-64
摘要
本文对进行NO退火和非NO退火的SiC MOS电容的栅泄漏电流的导通机理进行了分析,研究表明在高场下经过NO退火和未经过NO退火的样品的栅泄露电流都由Fowler-Nordheim(FN)隧穿决定,经过NO退火的势垒高度为2.67eV,而未经过NO退火的样品势垒高度为2.54eV,势垒高度的增加说明了氮化的作用.在中度电场区域,通过拟合分析发现此区域的栅泄漏电流主要由Poole-Frenkel发射(PF)决定,并不受陷阱辅助隧穿trap assisted tunneling(TAT)的影响.同时C-V特性也明显看出NO退火对界面质量的影响.
        Current conduction mechanisms of SiC MOS capacitors on n-type 4H-SiC with or without NO annealing were investigated in this work.Results show that FN tunneling is the dominate current conduction mechanism in the high electrical field,and the barrier height is2.67 eV and 2.54 eV respectively for experiencing NO annealing and without NO annealing.A higher barrier height for NO annealing sample indicate the effect of N element on the SiC/SiO2 interface quality.In intermediate oxide electrical field,instead of Trap-assisted tunneling PF emission dominate the current conduction in this region.And the C-V characteristics also show the advantages of NO annealing on the SiC/SiO2 characteristics.This work will provide significant foundation for the key processing technology of SiC MOS device.
引文
[1]Sometani Mitsuru,Okamoto Dai,Harada Shinsuke,et al.Temperature-dependent analysis of conduction mechanism of leakage current in thermally grown oxide on4H-SiC[J].Journal of Appl.Phys,2015,117:024505-5.
    [2]Oborina E I,Benjamin H N,Hoff A M.Fowler-Nordheim analysis of oxides on 4H-SiC substrates using noncontact metrology[J].Journal of Appl.Phys,2009,106:083703.
    [3]Le-Huu M,Schmitt H,Noll S,et al.Investigation of the reliability of 4H-SiC MOS devices for high temperature applications[J].Microelectron Reliability,2011,51:1346-1350.
    [4]Cheong K Y,Bahng W,Kim N K.Analysis of charge conduction mechanisms in nitrided SiO2film on 4H-SiC[J].Phys.Lett.A,2008,372(4):529-532.
    [5]Cheong K Y,Bahng W,Kim N K.Current conduction mechanisms in post nitridation rapid thermal annealed gate oxides on 4Hsilicon carbide[J].Appl.Phys.Lett,2005,87:212102-5.
    [6]Poobalan B,Moon J H,Kim S C,et al.Investigation of SiO2film growth on 4H-SiC by direct thermal oxidation and postoxidation annealing techniques in HNO3&H2O vapor at varied process durations[J].Thin Solid Films,2014,570:138-149.
    [7]Kimoto Tsunenobu,Cooper James A.Fundamentals of silicon carbide technology:growth,characterization,devices and applications[M].[S.l.]:Google Books,2014.
    [8]Yang B L,Lai P T,Wong H.Conduction mechanisms in MOS gate dielectric films[J].Microelectronics Reliability,2004,44:709-718.
    [9]Ouennoughi Z,Strenger C,Bourouba F,et al.Conduction mechanisms in thermal nitride and dry gate oxides grown on 4H-SiC[J].Microelectronics Reliability,2013,53:1841-1847.
    [10]Li Huifeng,Sima Dimitrijev,Denis Sweatman.Analysis of fowler-nordheim injection in no nitrided gate oxide grown on n-type 4H-SiC[C]∥Proc.of 22nd International Conference on Microelectronics.[S.l.]:MIEL,2000:14-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700