用户名: 密码: 验证码:
倾斜可液化场地中矩形闭合型地下连续墙桥梁基础动力特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Seismic behavior of rectangular closed diaphragm walls as bridge foundations in slope liquefiable deposits
  • 作者:李艳 ; 程谦恭 ; 张建磊 ; 吕波 ; 王玉峰 ; 谢尚英
  • 英文作者:LI Yan;CHENG Qian-gong;ZHANG Jian-lei;Lü Bo;WANG Yu-feng;XIE Shang-ying;Department of Geological Engineering, Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University;State-Province Joint Engineering Laboratory of Spatial Information Technology for High-Speed Railway Safety;Sichuan Southwest Jiaoda Civil Engineering Design Co., Ltd.;
  • 关键词:矩形闭合型地下连续墙 ; 砂土液化 ; 倾斜场地 ; 离心机振动台试验 ; 桥梁基础
  • 英文关键词:rectangular closed diaphragm wall;;liquefaction;;slope deposit;;dynamic centrifuge test;;bridge foundation
  • 中文刊名:YTGC
  • 英文刊名:Chinese Journal of Geotechnical Engineering
  • 机构:西南交通大学地质工程系;西南交通大学高速铁路运营安全空间信息技术国家地方联合工程实验室;四川西南交大土木工程设计有限公司;
  • 出版日期:2018-12-05 11:42
  • 出版单位:岩土工程学报
  • 年:2019
  • 期:v.41;No.336
  • 基金:国家重点研发计划(2017YFC1501000);; 国家自然科学基金项目(41530639,41761144080,41372292);; 长江学者和创新团队发展计划(IRT13092)
  • 语种:中文;
  • 页:YTGC201905024
  • 页数:8
  • CN:05
  • ISSN:32-1124/TU
  • 分类号:169-176
摘要
矩形闭合型地下连续墙作为一种新型桥梁基础,在倾斜可液化场地中的动力响应特性还不清楚。基于离心机振动台试验结果,研究在倾斜可液化场地中的不同地震动工况下,矩形闭合型地下连续墙桥梁基础抵抗土体液化的性能及其位移(沉降、转角和水平位移)特征。通过对比在三种地震动(小震峰值为0.05g、中震峰值为0.13g、大震峰值为0.50g)作用下,远场土体与墙内土芯的动力响应特征,证实了矩形闭合型地下连续墙基础的抗液化性能。综合分析在3种地震动工况下,矩形闭合型地下连续墙基础的位移特征,讨论了其在倾斜可液化场地中作为桥梁基础的优劣性;分析发现在中震工况下,在可液化场地中矩形闭合型地下连续墙基础作为桥梁基础的性能最为显著。此外,通过对比有、无承台的两组矩形闭合型地下连续墙基础的位移特征,分析了矩形闭合型地下连续墙基础顶部承台的作用。
        As a new type of bridge foundations, the seismic behavior of the rectangular closed diaphragm wall(RCDW) in slope liquefiable deposits requires a deep investigation. The liquefaction mitigation capability and displacement characteristics(settlements, rotations, and horizontal displacements) of RCDWs as bridge foundations in slope liquefiable deposits in different shaking events are studied on the basis of dynamic centrifuge test results. A comparison of different responses of the soil in the far field and the soil core enclosed by RCDWs in three shaking events(peak values of small, moderate, and large shaking events are 0.05 g, 0.13 g, and 0.50 g, respectively) verifies that RCDWs can mitigate liquefaction to some extent. On the basis of the displacement characteristics of RCDWs in these three shaking events, the merits of RCDWs serving as bridge foundations are discussed, and the discussion shows that RCDWs are the most advantageous for serving as bridge foundations in moderate shaking events in liquefiable deposits. Furthermore, the effects of caps on the displacement characteristics of RCDWs are analyzed based on the results of two different dynamic centrifuge tests.
引文
[1]丛蔼森.地下连续墙的设计施工与应用[M].北京:中国水利水电出版社,2001.(CONG Ai-sen.Design and construction application of diaphragm wall[M].Beijing:China Water and Power Press,2001.(in Chinese))
    [2]文华,程谦恭,陈晓东,等.矩形闭合地下连续墙桥梁基础竖向承载特性试验研究[J].岩土工程学报,2007,29(12):1823-1830.(WEN Hua,CHENG Qian-gong,CHENXiao-dong,et al.Study on bearing performance of rectangular closed diaphragm walls as bridge foundations under vertical loading[J].Chinese Journal of Geotechnical Engineering,2007,29(12):1823-1830.(in Chinese))
    [3]WEN H,CHENG Q G,MENG F C,et al.Diaphragm wall-soil-cap interaction in rectangular closed diaphragm wall bridge foundations[J].Frontiers of Structural and Civil Engineering,2009,3(1):93-100.
    [4]海野隆哉.地下連続壁を用いた函型剛体基礎の設計?施工[J].コンクリート工学,1984,22(6):4-11.(KAINOTakaya.Closed wall foundation of reinforced concrete[J].Concrete Journal,1984,22(6):4-11.(in Japanese))
    [5]CHENG Q G,WU J J,WEN H.The behavior of a rectangular closed diaphragm wall when used as a bridge foundation[J].Frontiers of Structural and Civil Engineering,2012,6(4):398-420.
    [6]HAMADA M.Large ground deformations and their effects on lifelines:1964 Niigata earthquake//Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes[R].Buffalo NY:National Centre for Earthquake Engineering Research,1992.
    [7]TOWHATA I.Geotechnical earthquake engineering[M].Berlin Heidelberg:Springer-Verlag,2008.
    [8]CUBRINOVSKI M,HASKELL J,WINKLEY A,et al.Performance of bridges in liquefied deposits during the2010-2011 Christchurch,New Zealand earthquakes[J].Journal of Performance of Constructed Facilities,2014,28(1):24-39.
    [9]JAPANESE GEOTECHNICAL SOCIETY.Remedial measures against soil liquefaction-From investigation and design to implementation[M].Netherlands:AA Balkema,1998.
    [10]刘华北,宋二祥.截断墙法降低地下结构物地震液化上浮[J].岩土力学,2006,27(7):1049-1055.(LIU Hua-bei,SONG Er-xiang.Reducing uplift of underground structures using cutoff walls[J].Rock and Soil Mechanics,2006,27(7):1049-1055.(in Chinese))
    [11]卢之伟,谢旭升,黄雨,等.地震时地下连续墙围束效应与围束土壤超孔隙水压力之探讨[J].岩土工程学报,2007,29(6):861-865.(LU Chih-wei,HSIEH Hshu-sheng,HUANG Yu,et al.Numerical study on seismic interaction between wall-type underground structures and excess pore water pressure of confined soils[J].Chinese Journal of Geotechnical Engineering,2007,29(6):861-865.(in Chinese))
    [12]DASHTI S,BRAY J D,PESTANA J M,et al.Centrifuge testing to evaluate and mitigate liquefaction-induced building settlement mechanisms[J].Journal of Geotechnical and Geoenvironmental Engineering,2010,136(7):918-929.
    [13]ZHENG J,SUZUKI K,OHBO N,et al.Evaluation of sheet pile-ring countermeasure against liquefaction for oil tank site[J].Soil Dynamics and Earthquake Engineering,1996,15(6):369-379.
    [14]RASOULI R,TOWHATA I,HAYASHIDA T.Mitigation of seismic settlement of light surface structures by installation of sheet-pile walls around the foundation[J].Soil Dynamics and Earthquake Engineering,2015,72:108-118.
    [15]程谦恭.格栅式地下连续墙桥梁基础抗地震液化机理研究[J].学术动态,2014(1):35-44.(CHENG Qian-gong.Mechanism of LSDW as bridge foundation against seismic liquefaction[J].Academic News,2014(1):35-44.(in Chinese))
    [16]吴九江,程谦恭,文华,等.软土地基格栅式地下连续墙与群桩桥梁基础竖向承载性状对比模型试验研究[J].岩土工程学报,2014,36(9):1733-1744.(WU Jiu-jiang,CHENG Qian-gong,WEN Hua,et al.Vertical bearing behaviors of lattice shaped diaphragm walls and group piles as bridge foundations in soft soils[J].Chinese Journal of Geotechnical Engineering,2014,36(9):1733-1744.(in Chinese))
    [17]吴九江,文华,程谦恭,等.基于接触面参数反演的格栅式地下连续墙桥梁基础竖向承载特性数值分析[J].岩土工程学报,2016,38(8):1456-1465.(WU Jiu-jiang,WENHua,CHENG Qian-gong,et al.Numerical analysis for vertical loaded lattice-shaped diaphragm wall based on an approach for determining interfacial parameters[J].Chinese Journal of Geotechnical Engineering,2016,38(8):1456-1465.(in Chinese))
    [18]WU J J,CHENG Q G,WEN H,et al.Comparison on the horizontal behaviors of lattice-shaped diaphragm wall and pile group under static and seismic loads[J].Shock and Vibration,2016,2016(6):1-17.
    [19]陈云敏,韩超,凌道盛,等.ZJU400离心机研制及其振动台性能评价[J].岩土工程学报,2011,33(12):1887-1894.(CHEN Yun-min,HAN Chao,LING Dao-sheng,et al.Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system[J].Chinese Journal of Geotechnical Engineering,2011,33(12):1887-1894.(in Chinese))
    [20]李永刚.长持时强震下砂土液化沉降机制与评价方法研究[D].杭州:浙江大学,2014.(LI Yong-gang.The mechanism and evaluation of liquefaction-induced large settlement of sandy ground under long-duration earthquakes[D].Hangzhou:Zhejiang University,2014.(in Chinese))
    [21]KUTTER B L.Recent advances in centrifuge modeling of seismic shaking[C]//Proceeding of the Third International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics.St.Louis Missouri,1995:927-942.
    [22]YOUD T L.Major cause of earthquake damage is ground failure[J].Civil Engineering-ASCE,1978,48(4):47-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700