新型相变材料对低热水泥浆性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Effects of a New Phase Change Material on the Properties of Low Heat Cement Slurries
  • 作者:宋建建 ; 许明标 ; 王晓亮 ; 黄峰 ; 秦国川
  • 英文作者:SONG Jianjian;XU Mingbiao;WANG Xiaoliang;HUANG Feng;QIN Guochuan;Petroleum Engineering College,Yangtze University;Hubei Cooperative Innovation Center of Unconventional Oil and Gas,Yangtze University;
  • 关键词:低热水泥 ; 固井 ; 相变材料 ; 水化热 ; 天然气水合物层
  • 英文关键词:Low heat cement slurry;;Well cementing;;Phase change material;;Heat of hydration;;Formation with natural gas hydrate
  • 中文刊名:ZJYW
  • 英文刊名:Drilling Fluid & Completion Fluid
  • 机构:长江大学石油工程学院;非常规油气湖北省协同创新中心(长江大学);
  • 出版日期:2019-03-30
  • 出版单位:钻井液与完井液
  • 年:2019
  • 期:v.36;No.198
  • 基金:国家科技重大专项课题“海外复杂地层固井及修井液技术”(2017ZX05032004-004)
  • 语种:中文;
  • 页:ZJYW201902015
  • 页数:6
  • CN:02
  • ISSN:13-1118/TE
  • 分类号:90-95
摘要
深水低温天然气水合物地层固井,需要水泥浆体系在水化过程中少发热,尽量降低水合物地层温度上升的程度。因此,针对深水天然气水合物地层固井,研究了一种用于低热水泥浆体系设计的新型相变材料,并研究了相变材料的热存储性能及其对水泥浆体系性能的影响。实验结果表明,新型相变材料相变峰值温度为15.5℃,相变温度在井下低温与常温之间,且相变潜热较大。当相变材料在77.8℃以下时,具有良好的热稳定性,且在0℃~60℃之间经历多次升降温后,相变材料化学结构没有发生变化。随着相变材料加量的增加,水泥浆的流变数据呈现增大的趋势,但加量达到8%时流变性依然满足固井施工要求。此外,新型相变材料可以改善水泥浆体系的稳定性。相变材料对低热水泥浆体系的抗压强度影响不大,加入8%相变材料的水泥石抗压强度也达到8.9 MPa,抗压强度最大下降幅度小于5%。当加入2%、4%、6%、8%相变材料后,水泥浆体系稠化时间比无相变材料水泥浆体系最大缩短约15 min,水泥浆体系72 h水化热较空白水泥浆体系分别下降5.2%、29.1%、35.6%、47.6%。研究结果为天然气水合物层低热水泥浆体系的设计提供了支持与参考。
        When cementing wells drilled in low temperature deep water zones, cement slurry should give off less heat during hydration process to minimize the increase of temperature of the formations with natural gas hydrate. A new phase change material has been developed for use in low heat cement slurries used to cement wells penetrating formations with gas hydrate. The heat storage performance of the phase change material and its effects on the properties of cement slurry were studied. Laboratory experimental results showed that the peak temperature at which phase change takes place was 15.5 ℃ for the new phase change material. This temperature sits between downhole low temperatures and ambient temperature, and the latent heat of phase change was high. At temperatures below 77.8 ℃, the phase change material had good thermal stability. No change to the chemical structure of the phase change material ever happened after the phase change material had undergone many times of temperature fluctuation between 0 ℃ and 60 ℃. The rheology of the cement slurry increased with an increase in the concentration of the phase change material. Increasing the concentration of the phase change material to 8% did not affect the ability of the cement slurry to satisfy the needs of well cementing. Furthermore, the new phase change material helped improve the stability of cement slurry and only slightly affected the compressive strength of the low heat cement slurries. A low heat cement slurry treated with 8% of the new phase change material had set cement with compressive strength of 8.9 MPa, and the decrease of the compressive strength was less than 5% at most. When added 2%, 4%, 6% and 8% new phase change material into a cement slurry respectively, the thickening time of the cement slurry was 15 min less than that of the cement slurry without the new phase change material(the blank cement slurry). The 72-hour heat of hydration of the four cement slurries were reduced by 5.2%, 29.1%, 35.6% and 47.6% than the blank cement slurry, respectively. This study has provided a technical support and reference to the design of low heat cement slurry for use in cementing wells penetrating formations with natural gas hydrate.
引文
[1]黄守国.适合于深水钻井的低热水泥浆研究[D].荆州:长江大学,2012.HUANG Shouguo.Study of low thermal cementing slurry suitable for deep water drilling[D].Jingzhou:Yangtze University,2012.
    [2]SCHICKS J M,SPANGENBERG E,STEINHAUERB,et al.Natural gas hydrates:development and test of innovative methods for gas production from hydratebearing sediments[C].SPE 137667,2010.
    [3]REDDY B R.Novel low heat-of-hydration cement compositions for cementing gas hydrate zones[C].SPE114927,2008,.
    [4]于欣,胡晓峰,黄占华.有机/复合相变储能材料研究进展[J].功能材料,2012,43(S0):16-21.YU Xin,HU Xiaofeng,HUANG Zhanhua.Research progress in organic/composite phase change materials for energy storage[J].Journal of Functional Materials,2012,43(S0):16-21.
    [5]齐志刚.低温低水化热固井水泥浆体系研究[D].青岛:中国石油大学(华东),2009.QI Zhigang.Research on a low temperature and low hydration heat cement slurry system[D].Qingdao:China University of Petroleum,2009.
    [6]许明标,王晓亮,周建良,等.天然气水合物层固井低热水泥浆研究[J].石油天然气学报,2014(11):134-137.XU Mingbiao,WANG Xiaoliang,ZHOU Jianliang,et al.The research of low-heat slurry for cementing in the natural gas hydrate formation[J].Journal of Oil and Gas Technology,2014(11):134-137.
    [7]霍锦华,彭志刚,冯茜,等.深水天然气水合物层固井用无机/有机复合型低水化热及水化温升水泥浆体系[C]//2018年固井技术研讨会论文集,北京:石油工业出版社,2018:106-115.HUO Jinhua,PENG Zhigang,FENG Qian,et al.Inorganic/organic composite low hydration heat and hydration temperature rise cement slurry system for cementing deewater gas hydrate layer[C]//Papers Collection of 2018 Cementing Technology Seminar.Beijing:Petroleum Industry Press,2018:106-115.
    [8]邢希金,许明标.低热水泥吸热储能材料研究[J].重庆科技学院学报(自然科学版),2016,18(5):100-102.XING Xijin,XU Mingbiao.Study on endothermic energystorage material of low thermal cement[J].Journal of Chongqing University of Science and Technology(Natural Sciences Edition),2016,18(5):100-102.
    [9]张金华,方念乔,魏伟,等.天然气水合物成藏条件与富集控制因素[J].中国石油勘探,2018,23(3):35-46.ZHANG Jinhua,FANG Nianqiao,WEI Wei,et al.Accumulation conditions and enrichment controlling factors of natural gas hydrate reservoirs[J].China Petroleum Exploration,2018,23(3):35-46.
    [10]李莉.相变材料及其储能混凝土的制备与性能研究[D].重庆:重庆大学,2010.LI Li.Research on preparation and properties of phase change materials and energy storage concrete[D].Chongqing:Chongqing University,2010.
    [11]畅玉皎.公路用微胶囊型相变调温剂序列与中试研究[D].西安:长安大学,2013.CHANG Yujiao.Research on sequences and pilot test of MEPCTA in highway construction[D].Xi'an:Chang'an University,2013.
    [12]雷鹏飞.页岩气水平井固井技术研究[D].西安:西安1):g,5):3):石油大学,2014.LEI Pengfei.Research on cementing technology of shale gas horizonal well[D].Xi'an:Xi'an Shiyou University,2014.
    [13]张明昌,牟忠信.水泥浆失水量对油气层损害影响的试验研究[J].钻井液与完井液,2005,22(1):74-75.ZHANG Mingchang,MOU Zhongxin.Laboratory study on formation damage caused by cement slurry filtrate[J].Drilling Fluid&Completion Fluid,2005,22(1):74-75.
    [14]PLANK J,LUMMER N R,Dugonj i?-Bi l i?F.Competitive adsorption between an AMPS-based fluid loss polymer and Welan gum biopolymer in oil well cement[J].Journal of Applied Polymer Science,2010,116(5):2913-2919.
    [15]冯望生,田群山,杜江,等.玉门油田水平井固井技术[J].钻井液与完井液,2016,33(5):98-102.FENG Wangsheng,TIAN Qunshan,DU Jiang,et al.Horizontal well cementing technology used in Yumen oilfield[J].Drilling Fluid&Completion Fluid,2016,33(5):98-102.
    [16]SAASEN A,RAFOSS E,BEHZADI A.Experimental investigation of rheology and thickening time of class Goil well cement slurries containing glycerin[J].Cement&Concrete Research,1991,21(5):911-916.
    [17]LIU H,BU Y,SANJAYAN J,et al.Effects of chitosan treatment on strength and thickening properties of oil well cement[J].Construction&Building Materials,2015,75:404-414.
    [18]王瑞和,齐志刚,步玉环.深水水合物层固井存在问题和解决方法[J].钻井液与完井液,2009,26(1):78-80.WANG Ruihe,QI Zhigang,BU Yuhuan.Problems and solutions:Cementing in hydrates bearing formations in deepwater well[J].Drilling Fluid&Completion Fluid,2009,26(1):78-80.
    [19]肖伟.乐东15-1气田低密度水泥浆技术研究[D].青岛:中国石油大学(华东),2011.XIAO Wei.Study of low density cementing slurry system in Ledong 15-1 gas field[D].Qingdao:China University of Petroleum,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700