磨料水射流与磨料气体射流破岩压力对比分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison analysis on the rock breakage pressure induced by abrasive water jets and abrasive gas jets
  • 作者:刘勇 ; 陈长江 ; 魏建平 ; 张娟
  • 英文作者:LIU Yong;CHEN Changjiang;WEI Jianping;ZHANG Juan;State Key Laboratory Cultivation Base for Gas Geology and Gas Control,Henan Polytechnic University;School of Safety Science and Engineering,Henan Polytechnic University;Coal Production Safety Collaborative Innovation Center in Henan Province;
  • 关键词:磨料水射流 ; 磨料气体射流 ; 能量屈服准则 ; 破岩 ; 冲蚀坑体积
  • 英文关键词:abrasive water jet;;abrasive gas jet;;energy yield criterion;;rock breaking;;erosion pit volume
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:河南理工大学河南省瓦斯地质与瓦斯治理重点实验室(省部共建国家重点实验室培育基地);河南理工大学安全科学与工程学院;煤炭安全生产河南省协同创新中心;
  • 出版日期:2018-09-15
  • 出版单位:煤炭学报
  • 年:2018
  • 期:v.43;No.288
  • 基金:国家自然科学基金资助项目(51704096);; 河南理工大学自然科学基金资助项目(J2018-4);; 河南省瓦斯地质与瓦斯治理重点实验室开放基金资助项目(WS2017A02)
  • 语种:中文;
  • 页:MTXB201809018
  • 页数:8
  • CN:09
  • ISSN:11-2190/TD
  • 分类号:148-155
摘要
为验证磨料气体射流破岩可行性,对比分析磨料水射流和磨料气体射流破岩效果。理论分析了磨料水射流和磨料气体射流中磨料加速机理,得出磨料动能与磨料水射流和磨料气体射流入口压力之间的数值关系。基于统一强度理论,建立了适用于磨料射流破岩的能量准则,得出了岩石破坏时所需的临界能量。根据磨料加速理论和岩石破坏临界能量计算了岩石破坏临界磨料速度以及所需入口压力。基于理论计算结果,试验验证了磨料水射流和磨料气体射流冲蚀灰岩的破碎效果。结果表明:当磨料速度达到270 m/s时,所需气体射流压力的理论值为15 MPa,水射流压力的理论值为45 MPa;两种磨料射流冲蚀坑形状相同,均呈现"V"型,磨料水射流的冲蚀坑形状相较于磨料气体射流具有"口小","坑深"的特征,磨料气体射流破灰岩形成的冲蚀坑体积要大于磨料水射流
        In order to verify the feasibility of rock breaking by abrasive gas jet,the effect of abrasive water jet and abrasive gas jet on rock breaking is compared and analyzed.In this paper,the mechanism of abrasive acceleration in abrasive water jet and abrasive gas jet is theoretically analyzed.The numerical relationship between the abrasive kinetic energy and inlet pressure of abrasive water jet and abrasive gas jet is obtained.Based on the unified strength theory,the energy criterion for rock breaking by abrasive jet is established,and the critical energy required for rock failure is obtained.Based on the accelerated theory of abrasive and the critical energy of rock failure,the critical rock velocity and the required inlet pressure of rock are calculated.Based on the theoretical calculation results,the crushing effect of abrasive water jet and abrasive gas jet on limestone erosion is experimentally studied.The results show that when the abrasive speed reaches 270 m/s,the required gas jet pressure theoretical value is 15 MPa,the water jet pressure theoreti-cal value is 45 MPa.Two kinds of abrasive jet erosion pits are shaped with "V"type.Compared with the abrasive gas jet,the shape of the crater of abrasive water jet has the characteristics of "small mouth"and "deep pit".The size of the erosion crater formed by the abrasive gas jet is larger than that of the abrasive water jet.
引文
[1]李晓红,孙家骏.准直管磨料射流在岩石上切割深槽的研究[J].煤炭学报,1999,24(4):395-398.LI Xiaohong,SUN Jiajun.Study on cutting deep slots on rock by quasi straight pipe abrasive jet[J].Journal of China Coal Society,1999,24(4):395-398.
    [2]温志辉,梁博臣,刘笑天.磨料特性对磨料气体射流破煤影响的实验研究[J].中国安全生产科学技术,2017,13(5):103-107.WEN Zhihui,LIANG Bochen,LIU Xiaotian. Experimental study on the effect of abrasive characteristics on coal breaking of abrasive gas jet[J]. Journal of Safety Science and Technology,2017,13(5):103-107.
    [3]郭楚文,徐晓东.空化磨料水射流粉碎技术[M].北京:中国科学文化出版社,2002.
    [4] BAHRAMI H,REZAEE R,CLENNELL B.Water blocking damage in hydraulically fractured tight sand gas reservoirs:An example from PERTH Basin,Western Australia[J]. Journal of Petroleum Science and Engineering,2012,88/89:100-106.
    [5]章文峰,卢义玉,汤积仁,等.基于PIV技术的磨料水射流中固体磨料粒子速度分布实验研究[J].振动与冲击,2016,35(8):159-165.ZHANG Wenfeng,LU Yiyu,TANG Jiren,et al. Experimental study on velocity distribution of solid abrasive particles in abrasive water jet based on PIV Technology[J]. Journal of Vibration and Shock,2016,35(8):159-165.
    [6]陆国胜,龚烈航,王强,等.前混合磨料水射流磨料颗粒加速机理分析[J].解放军理工大学(自然科学版),2006,7(3):275-280.LU Guosheng,GONG Liehang,WANG Qiang,et al. Research on acceleration mechanism of abrasive in pre-mixed abrasive water jet[J]. PLA University of Science and Technology(Natural Science Edition),2006,7(3):275-280.
    [7]左伟芹,王晓川,郝富昌,等.基于迭代算法的磨料颗粒加速机制研究[J].中国石油大学学报(自然科学版),2016,40(4):104-109.ZUO Weiqin,WANG Xiaochuan,HAO Fuchang,et al. Research on acceleration mechanism of abrasive in pre-mixed abrasive water-jet based on iterative algorithm[J].Journal of China University of Petroleum(Edition of Natural Science),2016,40(4):104-109.
    [8]王瑞和,倪红坚.高压水射流破岩机理研究[J].中国石油大学学报(自然科学版),2002,26(4):118-122.WANG Ruihe,NI Hongjian. Study on rock breaking mechanism under high pressure jet[J]. Journal of China University of Petroleum(Edition of Natural Science),2002,26(4):118-122.
    [9]廖华林,李根生,易灿.水射流作用下岩石破碎理论研究进展[J].金属矿山,2005(7):1-5.LIAO Hualin,LI Gensheng,YI Can. Advance in study on theory of rock breaking under water jet impact[J]. Journal of Metal Mine,2005(7):1-5.
    [10]汤积仁,卢义玉,孙惠娟,等.基于CT方法的磨料射流冲蚀损伤岩石特性研究[J].岩石力学与工程学报,2016,35(2):297-302.TANG Jiren,LU Yiyu,SUN Huijuan,et al. Study of erosion and damage characteristics of rock by abrasive water jet using CT[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(2):297-302.
    [11]李宝玉,郭楚文,林柏泉.用于安全切割的磨料水射流喷嘴设计理论和方法[J].煤炭学报,2005,30(2):251-254.LI Baoyu,GUO Chuwen,LIN Baiquan.Theory and method of designing abrasive water-jet nozzle in safety cutting[J].Journal of China Coal Society,2005,30(2):251-254.
    [12]林晓东,卢义玉,汤积仁,等.前混合式磨料水射流磨料粒子加速过程数值模拟[J].振动与冲击,2015,34(16):19-24.LIN Xiaodong,LU Yiyu,TANG Jiren,et al.Numerical simulation of abrasive particles acceleration process in pre-mixed abrasive water jet[J].Journal of Vibration and Shock,2015,34(16):19-24.
    [13]王晓川,卢义玉,康勇,等.磨料水射流切割煤岩体实验研究[J].中国矿业大学学报,2011,40(2):246-251.WANG Xiaochuan,Lu Yiyu,KANG Yong,et al.Experimental study of abrasive water jet cutting coal rock mass[J].Journal of China University of Mining and Technology,2011,40(2):246-251.
    [14]董星.前混合式磨料水射流磨料颗粒运动的理论分析[J].黑龙江科技大学学报,2001,11(3):4-6.DONG Xing.Theoretical analysis of particle motion of abrasive water jet abrasive with pre mixed abrasive water[J]. Journal of Heilongjiang University of Science and Technology,2001,11(3):4-6.
    [15]董志勇.射流力学[M].北京:科学出版社,2005.
    [16]康勇.超音速低温旋流分离器拉瓦尔喷管流场数值分析[J].西北大学学报(自然科学版),2011,41(4):593-597.KANG Yong. The numerical analysis on laval-nozzle flow field of the supersonic low-temperature swirling separator[J]. Journal of Northwest University(Natural Science Edition),2011,41(4):593-597.
    [17]潘锦珊.气体动力学基础(修订版)[M].北京:国防工业出版社,1989:56-60.
    [18]高红,郑颖人,冯夏庭.岩土材料能量屈服准则研究[J].岩石力学与工程学报,2007,26(12):2437-2443.GAO Hong,ZHENG Yingren,FENG Xiating. Study on energy yield criterion of geomaterials[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(12):2437-2443.
    [19]谢和平,鞠杨,黎立云,等.岩体变形破坏过程的能量机制[J].岩石力学与工程学报,2008,27(9):1729-1740.XIE Heping,JU Yang,LI Liyun,et al.Energy mechanism of de-formation and failure of rock masses[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1729-1740.
    [20]周辉,李震,杨艳霜,等.岩石统一能量屈服准则[J].岩石力学与工程学报,2013,32(11):2170-2184.ZHOU Hui,LI Zhen,YANG Yanshuang,et al. Unified energy yield criterion of rock[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(11):2170-2184.
    [21] HUTCHINGS I M.Energy absorbed by elastic waves during plastic impact[J]. Journal of Physics D Applied Physics,1979,12(11):1819.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700