用户名: 密码: 验证码:
基于干扰补偿和微分器的转台反演滑模控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sliding Backstepping Mode Control for Flight Simulator Servo Based on Disturbance Compensation and Differentiator
  • 作者:刘慧博 ; 刘尚磊
  • 英文作者:Liu Huibo;Liu Shanglei;School of Information Engineering, Inner Mongolia University of Science and Technology;
  • 关键词:转台 ; 非线性扩张状态观测器 ; 干扰补偿 ; 微分器 ; 反演滑模控制
  • 英文关键词:flight simulator;;nonlinear extended state observer(NESO);;interference compensation;;differentiator;;sliding backstepping mode control
  • 中文刊名:XTFZ
  • 英文刊名:Journal of System Simulation
  • 机构:内蒙古科技大学信息工程学院;
  • 出版日期:2018-04-08
  • 出版单位:系统仿真学报
  • 年:2018
  • 期:v.30
  • 基金:内蒙古自然科学基金(2014MS0611)
  • 语种:中文;
  • 页:XTFZ201804048
  • 页数:8
  • CN:04
  • ISSN:11-3092/V
  • 分类号:389-396
摘要
针对转台系统中存在的摩擦力矩、建模误差等不确定性,提出了一种基于非线性扩张状态观测器和微分器的反演滑模控制策略。将上述不确定性定义为复合干扰,采用非线性扩张状态观测器进行观测和实时补偿,减小了干扰对系统的影响;利用微分器估计系统的状态变量,避免了差分法引起的噪声放大问题,根据估计的状态设计反演滑模控制器,控制律的设计保证了系统的稳定性和鲁棒性,趋近律的改进以及干扰补偿有效降低了滑模引起的"抖振"。仿真结果表明,该控制策略提高了系统的控制性能和抗干扰性,可以实现转台的高精度控制。
        Considering the uncertain factors in flight simulator servo system, such as friction torque and modeling error, a sliding backstepping mode control strategy based on the nonlinear extended state observer(NESO) and differentiator was put forward. The uncertain factors were defined as compound disturbances, and the NESO was used for observations in combination with real-time compensations that reduced impact on the system brought by disturbances. Differentiator was used to estimate the system state variables, hence preventing the noise amplifications caused by the difference method; law design came under the control of a sliding backstepping mode controller designed in accordance with the estimated state, ensuring the stability and robustness of the system. The chattering caused by sliding mode control was effectively reduced based on the improvement of approaching law and disturbance compensation. The simulation result indicates that this control strategy can realize high-precision control over flight simulator servo system due to its ability to improve the control performance and anti-interference performance of the system.
引文
[1]曲展龙,糜小涛,许宏光.仿真转台用电液伺服系统低速性研究及实现[J].液压与气动,2013(9):51-53.QU Zhan-long,MI Xiao-tao,XU Hong-guang.Research and Realization of Low-speed Performance of Electro-hydraulic Servo System for Simulator[J].Chinese Hydraulics and Pneumatics,2013(9):51-53.
    [2]刘强,冯姝婷,尔联洁.高精度机械伺服系统的一种新型自适应滑模控制方法[J].控制理论与应用,2004,21(2):239-241.LIU Qiang,FENG Shu-ting,ER Lian-jie.Novel adaptive sliding mode control scheme of high precision mechanical servo system[J].Control Theory and Applications,2004,21(2):239-241.
    [3]刘柏延,吴云洁,黄延福.基于模糊干扰观测器的自适应反演滑模控制研究[J].系统仿真学报,2011,23(8):1677-1680.LIU Bo-yan,WU Yun-jie,HUANG Yan-fu.Research of Adaptive Backstepping Sliding Mode Controller Based on Fuzzy Disturbance Observer[J].Journal of System Simulation,2011,23(8):1677-1680.
    [4]陈松林,单梅林,王丽斌.基于干扰观测器的飞行仿真转台完全跟踪控制[J].电机与控制学报,2015,19(1):113-118.CHEN Song-lin,SHAN Mei-lin.WANG Li-bing.Disturbance observer-based robust perfect tracking control for flight simulator[J].Electric Machines and Control,2015,19(1):113-118.
    [5]Zhao Rui,Wang WeiHong.Friction compensation of a Flight simulator based on disturbance observers and neural networks[C]//2013 International Conference on Natural Computation(S2157-9555),USA:IEEE,2013,23(1):205-209.
    [6]Dong Xiaomeng,Wu Yunjie,Xiao Song,et al.Global sliding mode control based on disturbance observer for motor servo system and application to flight simulator[C]//2014 6th IEEE Chinese Guidance,Navigation and Control Conference,USA:IEEE,2014:370-375.
    [7]Liu Youmin,Deng Yong,Tian Dapeng.Compound disturbance observer for flight simulator[C]//2012 Asia Simulation Conference and the International Conference on System Simulation and Scientific Computing(S1865-0929),Springer Berlin Heidelberg,2012,325:197-205.
    [8]于伟,马佳光,李锦英,等.基于LuGre模型实现精密伺服转台摩擦参数辨识及补偿[J].光学精密工程,2011,19(11):2736-2743.YU Wei,MA Jia-guang,LI Jing-ying,et al.Friction parameter identification and friction compensation for precision servo turning table[J].Optics and Precision Engineering,2011,19(11):2736-2743.
    [9]李飞,胡剑波,郑磊,等.飞行模拟转台的反推滑模控制优化设计[J].微特电机,2015,43(4):70-73.LI Fei,HU Jian-bo,ZHENG Lei,et al.Optimal Design of Backstepping Sliding Control for Flight Simulator Servo Systems[J].Small and Special Electrical Machines,2015,43(4):70-73.
    [10]Wu Yunjie,Liu Baiting,Zhang Wulong,et al.Adaptive backstepping sliding mode controller for flight simulator based on RBFNN[J].International Journal of Modeling,Simulation,and Scientific Computing(S 1793-9623),2013,4(4):1-14.
    [11]Wu Yunjie,Liu Youmin,Zhang Wulong.A discrete-time chattering free sliding mode control with multirate sampling method for flight simulator[J].Mathematical Problems in Engineering(S1024-123X),2013,25:211-244.
    [12]Li Fei,Hu Jianbo,Zhang Chao,et al.A particle swarm optimization approach for backstepping sliding mode control for flight simulator servo system[C]//2014Conference on Industrial Electronics and Applications,Institute of Electrical and Electronics Engineers 2014:759-764.
    [13]王卫红,姚志超,郑连强.三轴飞行仿真转台自适应复合控制方法[J].电机与控制学报,2011,15(9):74-79.WANG Wei-hong,YAO Zhi-chao,ZHENG Lian-qiang.Adaptive compound control method for the three-axis flight simulator[J].Electric Machines and Control,2011,15(9):74-79.
    [14]Yao Jianyong,Jiao Zongxia,Han Songshan.Friction compensation for low velocity control of hydraulic flight motion simulator:A simple adaptive robust approach[J].Chinese Journal of Aeronautics(S 1000-9361),2013,26(3):814-822.
    [15]Songshan Han,Zongxia Jiao,Chengwen Wang,et al.Fuzzy robust nonlinear control approach for electro-hydraulic flight motion simulator[J].Chinese Journal of Aeronautics(S1000-9361)2015,22(1):294-304.
    [16]姜静,吕恩辉,模糊滑模控制在数控转台伺服系统中的应用[J].沈阳理工大学学报,2014,33(2):61-65.JIANG Jing,LV En-hui.Application of Fuzzy Sliding Mode Control Algorithm in NC Rotary Table Servo System[J].Transactions of Shenyang Li gong University,2014,33(2):61-65.
    [17]赵建卫,亓迎川,李光明.基于模糊规则切换的转台伺服系统研究[J].空军雷达学院学报,2011,25(6):444-447.ZHAO Jian-wei,QI Ying-chuan,LI Guang-ming.ResearchonTurntable Servo System Based on Fuzzy Switching[J].Journal of Air Force Radar Academy,2011,25(6):444-447.
    [18]Zhao Yifei,Jiao Zongxia,Wu Shuai.Wiener recurrent neural network adaptive inverse controller of hydraulic flight motion simulator[C]//2015 International Conference on Fluid Power and Mechatronics(FPM),USA:IEEE,2015:523-528.
    [19]韩松杉,焦宗夏,汪成文,等.基于神经网络的电液转台非线性积分滑模控制[J].北京航空航天大学学报,2014,40(3):321-326.Han Song-shan,Jiao Zong-xia,Wang Cheng-wen,et al.Integral sliding mode nonlinear controller of electricalhydraulic flight simulator based on neural network[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(3):321-326.
    [20]韩京清.自抗扰控制技术-估计补偿不确定因素的控制技术[M].北京:国防工业出版社,2008.HAN Jing-qing.Active Disturbance Rejection Control Technique the technique for estimating and compensating the uncertainties[M].Beijing:National Defense Industry Press,2008.
    [21]孙振兴,李世华,张兴华.基于扩张状态观测器和有限时间控制的感应电机直接转矩控制[J].控制理论与应用,2014,31(6):748-756.SUN Zheng-xing,LI Shi-hua,ZHANG Xing-hua.Direct torque control of induction motor based on extended state observer and finite time control scheme[J].Control Theory and Applications,2014,31(6):748-756.
    [22]刘金琨.滑模变结构控制MATLAB仿真[M].2版.北京:北京清华大学出版社,2012.LIU Jin-kun.MATLAB simulation of sliding mode variable structure control[M].2~(th)Edition.Beijing:Tsinghua University Press,2012.
    [23]席雷平,陈自力,齐晓慧,等.基于非线性干扰观测器的机械臂自适应反演滑模控制[J].信息与控制,2013,4(42):470-477.XI Lei-ping,CHEN Zi-li,QI Xiao-hui.Adaptive Backstep-ping Sliding Mode Control for Robotic Manipulator with Nonlinear Disturbance Observer[J].Information and Control,2013,4(42):470-477.
    [24]王新华,刘金琨.微分器设计与应用[M].北京:电子工业出版社,2010.WANG Xin-hua,LIU Jin-kun.Design and application of differentiator[M].Beijing:Electronic Industry Press.2010.
    [25]刘金琨,尔联洁.飞行模拟转台高精度数字重复控制器的设计[J].航空学报,2004,25(1):59-61.LIU Jin-kun,ER Lian-jie.Design of High Precision Digital Repetitive Controller for Flight Simulator Servo system[J].Acta Aeronautica et Astronautica Sinica,2004,25(1):59-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700