SAXS研究四臂聚氧化乙烯片晶的增厚
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Studies on Lamellar Thickening of A Four-arm Poly( ethylene oxide) Using Small-angle X-Ray Scattering
  • 作者:温笑菁 ; 王维
  • 英文作者:Xiao-jing Wen;Wei Wang;School of Resources and Materials,Northeastern University at Qinhuangdao;Center for Synthetic Soft Materials,Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry,Nankai University;
  • 关键词:聚氧化乙烯 ; 小角X光散射 ; 片晶 ; 熔融-重结晶 ; 奥斯瓦尔德熟化
  • 英文关键词:Poly(ethylene oxide),Small-angle X-ray scattering,Lamellar thickening,Metlting-recrystallization,Ostwald ripening
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:东北大学秦皇岛分校资源与材料学院;南开大学软合成材料中心教育部功能高分子重点实验室高分子研究所;
  • 出版日期:2014-03-20
  • 出版单位:高分子学报
  • 年:2014
  • 基金:国家自然科学基金(基金号20474033和20874053)资助项目
  • 语种:中文;
  • 页:GFXB201403017
  • 页数:8
  • CN:03
  • ISSN:11-1857/O6
  • 分类号:126-133
摘要
使用小角X光散射(SAXS)方法研究了每臂分子量为5000的四臂聚氧化乙烯在从熔点以上的温度淬火到室温后,在室温到熔点前的温度区域里片晶的增厚过程.采用一维相关函数分析方法分析了SAXS数据,获得了样品的长周期、线性结晶度、结晶层和无定形层厚度随温度的变化.按照这些参数在升温过程中的演变规律,确定了3个特征区域.Ⅰ区约在26~45℃内,存在着3种不同厚度的片晶,最厚的片晶层厚度为9.3 nm,线性结晶度、长周期、结晶层和无定形层厚度等参数基本不变,称为不变区.Ⅱ区约在45~52℃之间,这些参数都发生变化,SAXS的主峰分化为两个主要的峰,长周期、结晶层和无定形层厚度开始增加,但是,线性结晶度升高后又降低,称为转变区.Ⅲ区约在52~60℃之间,体系中只有单一厚度的片晶,其厚度不断增厚,到60℃结晶层厚度达15.8 nm,称为增厚区.从分子运动和片晶亚稳定本质分析,可以解释实验上观察到的3个区域发生变化的本质:在不变区里,主要的分子运动几乎被冻结,不可能发生可检测到的片晶结构变化.在转变区里,分子运动开始起作用,未结晶的分子开始结晶.同时,薄片晶会熔融,尔后又重新结晶.在增厚区里,线性结晶度和结晶层厚度增加,也意味着熔融-重结晶过程还在继续,直至达到这个样品可能形成的最厚片晶的熔点.实验观察到的熔融-重结晶过程的本质是聚合物片晶的亚稳态特性,稳定性低的薄片晶向稳定性高的厚片晶转变,即一个典型的奥斯瓦尔德熟化(Ostwald ripening).
        Studies on the lamellar thickening of a 4-arm poly( ethylene oxide) with Mn= 5000 for each arm are reported. The samples were prepared by quenching from 70 ℃ to 10 ℃. Small-angle X-ray scattering( SAXS) was used to track the variation of lamellar structure during heating process. Then the SAXS data were further analyzed using one-dimensional correlation function. The following parameters,such as long period, linear crystallinity,crystalline layer thickness and amorphous layer thickness,were determined. Their changes with increasing temperature suggest three temperature regions. Region Ⅰ is in 26 ~ 45 ℃. There are three broad scattering peaks with low scattering intensity. They correspond to lamellae with different thicknesses. The crystalline layer thickness of the dominated lamella is about 9. 3 nm. Importantly,the parameters mentioned above remain unchanged in Region Ⅰ. Region Ⅱ within 45 ~ 52 ℃ is a transition one. The main peak of the SAXS curves turns into two. The long period,linear crystallinity,crystalline layer thickness and amorphous layer thickness began to increase. Region Ⅲ( 52 ~ 60 ℃) is a thickening region within which the crystalline layer thickness clearly increased with increasing temperature. At 60 ℃ its value is 15. 8 nm. These observed results found in the three regions were further explained based on the role of metastable states of polymer lamellae. Within region Ⅰ macromolecules were in a frozen state,thus it was impossible to detect any change related to the lamellar structure. Within region Ⅱ,the temperature is higher enough to let some thin crystalline layers melt and then the melted macromolecules would recrystallize around the thicker ones. In region Ⅲ the continuous melting-recrystallization process proceeds until the melting point of the sample. The observed melting-recrystallization process reflects the metastability of polymer lamellae: Thinner lamellae are in a metastable state with a lower stability,thus will melt to recrystallize to form thicker lamellae with a higher stability. Acctually,the continuous melting-recrystallization process is a typical Ostwald ripening of polymer lamellae.
引文
1 Ostwald W Z.Phys Chem 1897,22:289~330
    2 Ratke L,Voorhees P W.Growth and Coarsening-ostwald Ripening in Material Processing.Berlin:Springer,2002
    3 Bassett B C.Principles of Polymer Morphology.Cambridge:Cambridge University Press,1981
    4 Wunderlich B.Macromolecular Physics.New York:Ed.Academic Press,1973
    5 Armistead K,Goldbeck-Wood G.Adv Polym Sci,1992,100:221~312
    6 Strobl G.The physics of polymers,2nd Ed.Berlin,Heidelberg,New York:Springer,1997
    7 Keller A,Cheng S Z D.Polymer,1998,39:4461~4487
    8 Ungar G,Zeng X B.Chem Rev,2001,101:4157~4188
    9 Cheng SZD,Phase Transitions in Polymers:The role of Metastable States.Berlin:Elsevier Science,2008
    10 O’Leary K,Geil P H.J Macromol Sci-Phys,1967,B1:147~160
    11 Mandelkern L,Sharma R K,Jackson J F.Macromolecules,1969,2:644~656
    12 Fischer E W.Pure Appl Chem,1971,26:385~422
    13 Ichida T,Tsuji M,Murakami S,Kawaguchi A,Katayama K.Colloid&Polym Sci,1985,263:293~300
    14 Cho M H,Kyu T,Lin J S,Saijo K,Hashimoto T.Polymer,1992,33:4152~4157
    15 Matsuda H,Aoike T,Uehara H,Yamanobe T.Komoto T.Polymer,2001,42:5013~5021
    16 Zhai X M,Wang W,Ma Z P,Wen X J,Yuan F,Tang X F,He B L.Macromolecules,2005,38:1717~1722
    17 Tang X F,Wen X J,Zhai X M,Xia N,Wang W.Macromolecules,2007,40:4386~4388
    18 Xia Nan(夏楠),Tang Xiongfeng(唐雄峰),Wen Xiaojing(温笑菁),Zhang Guoliang(张国梁),Zhai Xuemei(翟雪梅),Wang Wei(王维).Acta Polymerica Sinica(高分子学报),2011,(9):1040~1052
    19 Ikeda Y,Nagasaki Y.Adv Polym Sci,2012,247:115~140
    20 Ohya Y,Takahashi A,Nagahama K.Adv Polym Sci,2012,247:65~114
    21 Stephan A M.Eur Polym J,2006,42:21~42
    22 Kovacs A J,Gonthier A,Straupe C.J Polym Sci Polym Symp,1975,50:283~325
    23 Kovacs A J,Straupe C,Gonthier A.J Polym Sci Polym Symp,1977,59:31~54
    24 Kovacs A J,Straupe C.J Cryst Growth,1980,48:210~226
    25 Hoffman J D.Macromolecules,1986,19:1124~128
    26 Arlie P,Spegt P A,Skoulios A.Makomol Chem,1966,99:160~174
    27 Arlie P,Spegt P A,Skoulios A.Makomol Chem,1967,104:212~229
    28 Mandelkern L,Sharma R K,Jackson J F.Macromolecules,1969,2:644~656
    29 Spegt P.Makromol Chem,1970,139:139~152
    30 Dreyfuss P,Keller A J.J Macromol Sci-Phys,1970,B4:811~836
    31 Pope D P,Keller A J.J Polym Sci:Polym Phys Ed,1976,14:821~831
    32 Takhashi Y,Tadokoro H.Macromolecules 1973,6:672~675
    33 Thierry A,Skoulios A E.Eur Polym J,1977,13:169~170
    34 Cheng S Z D,Zhang A Q,Barley J S,Chen J H,Habenschuss A,Zschack P R.Macromolecules,1991,24:3937~3944
    35 Cheng S Z D,Chen J H,Zhang A Q,Barley J S,Habenschuss A,Zschack P R.Macromolecules,1992,25:1453~1460
    36 Cheng S Z D,Wu S S,Chen J H,Zhuo Q,Quirk R P,von Meerwall E D,Hsiao B S,Habenschuss A,Zschack P R.Macromolecules,1993,26:5105~5117
    37 Zhu D S,Liu Y X,Shi A C,Chen E Q.Polymer,2006,47:5239~5242
    38 Liu Y X,Li J F,Zhu D S,Chen E Q,Zhang H D.Macromolecules,2009,42:2886~2890
    39 Zhai X M,Wang W,Zhang G L,He B L.Macromolecules,2006,39:324~329
    40 Zhai X M,Zhang G L,Ma Z P,Tang X F,Wang W.Macromol Chem Phys,2007,208:651~656
    41 Ma Z P,Zhang G L,Zhai X M,Jin L X,Tang X F,Yang M,Zheng P,Wang W.Polymer,2008,49:1629~1634
    42 Zhang G L,Jin L X,Ma Z P,Zhai X M,Yang M,Zheng P,Wang W,Wegner G.J Chem Phys,2008,129:224708
    43 Jin L X,Zhang G L,Zhai X M,Ma Z P,Zheng P,Wang W.Polymer,2009,50:6157~6157
    44 Zhang G L,Jin L X,Zheng P,Shi A C,Wang W.Polymer,2010,51:554~562
    45 Zhang G L,Cao Y,Jin L X,Zheng P,van Horn R M,Lotz B,Cheng S Z D,Wang W.Polymer,2011,52:1133~1140
    46 Zhang G L,Zhai X M,Ma Z P,Jin L X,Zheng P,Wang W,Cheng S Z D,Lotz B.ACS Macro Lett,2012,1:217~221
    47 Zhang G L,Jin L X,Zheng P,Wang W,Wen X J.Chinese J Polym Sci,2013,31(5):798~808
    48 Zhang Guoliang(张国梁),Wen Xiaojing(温笑菁),Zhai Xuemei(翟雪梅),Wang Wei(王维).Acta Polymerica Sinica(高分子学报),2013,(3):398~405
    49 Chen E Q,Lee S W,Zhang A,Moon B S,Harris F W,Cheng S Z D,Hsiao B S,Yeh F,Merrewell E V,Grubb D T.Macromolecules 1999,32:4784~493
    50 Strobl G R,Schneider M.J Polym Sci Part B Polym Phys B,1980,18:1343~1359
    51 Stribeck N,X-ray Scattering of Soft Matters.Berlin:Springer,2007.145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700