碳含量对Cr25Ni20型奥氏体耐热钢高温氧化性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of carbon content on high-temperature oxidation properties of Cr25Ni20 austenitic heat-resistant steel
  • 作者:刘靖 ; 王云平
  • 英文作者:LIU Jing;WANG Yun-ping;School of Materials Science and Engineering,University of Science and Technology Beijing;Iron and Steel Institute,Hongxing Iron and Steel Co.,Ltd.,JISCO;
  • 关键词:Cr25Ni20型奥氏体耐热钢 ; 高温氧化 ; 氧化膜 ; 黏附力
  • 英文关键词:Cr25Ni20 austenitic heat-resistant steel;;high temperature oxidation;;oxide scale;;adhesion
  • 中文刊名:ZGYE
  • 英文刊名:China Metallurgy
  • 机构:北京科技大学材料科学与工程学院;甘肃酒钢集团宏兴钢铁股份有限公司钢铁研究院;
  • 出版日期:2019-02-15
  • 出版单位:中国冶金
  • 年:2019
  • 期:v.29
  • 语种:中文;
  • 页:ZGYE201902007
  • 页数:5
  • CN:02
  • ISSN:11-3729/TF
  • 分类号:38-42
摘要
对两种不同碳含量的Cr25Ni20型奥氏体耐热不锈钢分别加热到800和1 100℃循环氧化96h后,进行了循环氧化分析,并利用扫描电镜观察钢材表面氧化膜形貌;利用X射线衍射仪对氧化膜进行物相分析;采用划痕法测量氧化膜与金属基体的黏附力。结果表明,氧化膜是由菱形结构的Cr2O3晶粒和尖晶石结构的MnCr2O4晶粒组成,随着氧化温度的升高,氧化物晶粒变得粗大并由菱形结构向尖晶石结构转变;碳含量的增加造成"贫铬"现象的发生,减缓保护性氧化膜的生成,降低氧化膜与金属基体的黏附力;随着氧化温度的升高,氧化膜横截面的厚度不断增加,氧化膜受破坏程度也不断加剧。
        Two kinds of Cr25Ni20 austenitic heat-resistant steels with different carbon content were heated to 800 and 1 100℃respectively for 96 h.The cyclic oxidation curves were analyzed and the surface morphology of oxide films were observed by scan electron microscope.The composition of oxide film phase composition was analyzed by XRD method and the adhesion between oxidation film and metal substrate was measured through the scratching method.The results showed that the oxide film was made by diamond structure Cr_2O_3 grain and spinel structure of MnCr_2O_4 grain.With the increase of oxidation temperature,the oxide grains became bulky and transferred from the diamond structure into the spinel structure.The increase of carbon content caused the occurrence of "chrome-poor" phenomenon,slowed down the formation of the protective oxide film and reduced the adhesive force.With the increase of oxidation temperature,the thickness of the cross section of oxide film increased and the damage degree of oxide film increased too.
引文
[1]徐乐江.中国不锈钢市场与发展中的宝钢不锈钢事业[J].宝钢技术,2001(1):1.
    [2]翟俊,刘浏.EAF+AOD+LF流程冶炼310S耐热钢夹杂物控制[J].钢铁,2017,52(5):31.
    [3]任培东.310S耐热不锈钢热变形行为及热加工图[J].中国冶金,2017,27(7):34.
    [4]裴明德,李国平,范新智,等.耐热不锈钢310S的高温氧化性能[J].中国冶金,2016,26(2):31.
    [5]杨照明,韩静涛,刘靖.奥氏体耐热不锈钢SUS310S的抗高温氧化性能研究[J].材料热处理,2006,35(14):33.
    [6] Suárez L,Houbaert Y,Eynde V.High temperature deformation of oxide scale[J].Corrosion Science,2009,51(2):309.
    [7] Sun W,Tieu A K,Jiang Z.Oxide scales growth of low-carbon steel at high temperatures[J].Journal of Materials Processing Technology,2004(155/156):1300.
    [8]朱日彰,卢亚轩.耐热钢和高温合金[M].北京:化学工业出版社,1996.
    [9]肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,2006.
    [10]张新微,孙世清.316L奥氏体不锈钢纤维高温氧化研究[J].河北化工,2008,31(2):24.
    [11]李铁藩.金属高温氧化和热腐蚀[M].北京:化学工业出版社,2003.
    [12]陈华.奥氏体不锈钢高温氧化性能与晶粒长大行为的研究[D].兰州:兰州理工大学,2011.
    [13]张雷.不锈钢加热过程中高温氧化及碳钢轧后表面发黑处理研究[D].北京:北京科技大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700